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Abstract
High-Level Structures (HLS) extraction consist in recognizing/extracting 3D elements from
images. There are several approaches for HLS extraction and several algorithms have been
proposed. Most previous work processing two or more camera views or processing 3D data
in the form of point clouds. In general, two camera views/3D point cloud approaches have
good performance for certain scenes with video sequences or image sequences, but they
need sufficient parallax or use thresholds in order to guarantee accuracy. Other approach,
more promising in terms of scope and flexibility, is HLS from a single image. Unlike the
other trends (using two views or using 3D point clouds) this approach extracts HLS with-
out parallax constraint and without thresholds. This is useful due to in real world ap-
plications several data are limited to a single view from an unknown scene, for example,
internet images, personal pictures and so on. For HLS extraction based on a single view,
there is an important limitation since only planes are extracted. In practice, this limits the
three-dimensional/geometrical understanding since other HLS such as spheres, cylinders
and cubes provide richer 3D information than only planar structures.

In this thesis work, we are interested in extracting HSL such as spheres, cylinders and
cubes. We believe that this would be useful because a methodology of more diverse structures
(spheres, cylinders, cubes, etc.) would provide more rich scene information than previous
work. In addition, 3D structures such as spheres, cylinders and cubes would increase the
performance in several real-world applications where HLS are used such as navigation, aug-
mented reality, 3D model, etc. We will propose the use color, gradient and texture features
as input in a learning algorithm, it will deliver a geometric classification of the scene. This
classification will be used as a reference for HLS (spheres, cylinders and cubes) extraction.
As work in progress, we have been proposed a new texture feature based on binary patterns
which provide discriminant values for HLS recognition, a dataset of urbanized environments
with light intensities variations, a method to obtain dominant structures orientation and
an augmented reality application using planar structure recognition.

keywords: High-Level Structures, HLS Extraction, Single Image, 3D model, Urbanized
Scenes.
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Chapter 1

Introduction
In computer vision, High-Level Structures (HLS) extraction consist in recogniz-
ing/extracting 3D elements from images. There are several HLS that can be extracted
(lines, planes, spheres, cylinders, cubes, etc.) and several approaches for HLS extraction
have been proposed. In general, the use of HLS provides rich scene information since in
man-made scenes (urbanized environments) there exist abundant HLS. In addition, HLS
reduces computational processing by covering large areas with a few parameters. Due to
this characteristics (rich scene information and computational processing reduction), several
tasks, for example: robotics (1), augmented reality (2), navigation (3), 3D reconstruction (4)
and Simultaneous Localization and Mapping (SLAM) (5), use HLS in order to performance
improvements, as mathematical simplification and sped up. In Fig. 1.1, an example of HLS
extraction is shown.

a) Input image b) 3D High-Level Structures

Fig. 1.1: High-Level Structures extraction. The 3D sphere in image (b) correspond to ball in the input image
(a), while the blue plane in image (b) correspond to the scene floor (a).

There exist several approaches for HLS extraction: the first, analyzes two or more images
captured from different camera views (6), (7). This approach has high performance under
image sequences (collections of images related by time, such as frames in a movie or magnetic
resonance imaging), unfortunately, it is necessary sufficient parallax1, i.e., some difference
(as shown in Fig. 1.2) between camera views in order to reach accurate results.

Other approach associates HLS with a 3D point cloud (8), (9), these methods rely on
fitting algorithms, typically RANSAC and some optimization technique in order to fit HLS
within 3D point clouds. Nevertheless, several thresholds and specifically set up are required
in order to guarantee high performance for a specific scene. This is an important limitation
because is several cases it is difficult to set appropriate thresholds set up values.

Other approach, and which we are interested in this research is the extraction of HLS
from single image (10). Unlike the other trends (using two views or using 3D point clouds)

1Parallax is defined as the angle obtained by the objects displacement from an image sequence. i.e.,
closer objects have a larger displacement between images, while distant objects have small displacements,
see Fig. 1.2.

[1]



2 1. Introduction

this approach extracts HLS without parallax constraint. This is useful because in real world
applications several data are limited to a single view from an unknown scene, for example
historical images, internet images, personal pictures, holiday photos and so on. So, in current
work, HLS from single image represent a promising solution with high performance, however,
there are several challenges because there is insufficient information recorded in an image,
i.e., there is not depth information from the image pixels or parallax information.

In recent work (11; 12), important progress in 3D structure interpretation have been
made. This was achieved via learning algorithms that learn the relationship between vi-
sual appearance and scene structure. Motivated by the results of such techniques, and the
potential benefits that single-image perception provides (HLS extraction without parallax
constrains, extraction without threshold values), this thesis proposal focuses on 3D recon-
struction from a single image. We believe this is a very interesting task, since despite the
considerable challenges involved, some kinds of single image structure interpretation do
indeed seem to be possible.

a) View 1 b) View 2

Fig. 1.2: Image parallelism. In view 2 the sewer cover has a larger displacement in axis x (28 pixels) that
the flower pot (9 pixels).

1.1 Justification

Previous works demonstrated that HLS extraction deliver rich 3D information because in
urbanized environments there exist abundant HLS. In addition, HLS extraction methods
from a single view unlike the other trends (using two views or 3D point clouds) allow
the HLS extraction without parallax constraint and thresholds in order to guarantee high
performance for a specific scene. These characteristics (HLS extraction without parallax
and without threshold values) are useful due to in real world applications several data are
limited to a single view of an unknown scene, for example, historical images, internet images,
personal pictures, holiday photos and so on. Unfortunately, there is an important limitation
since HLS such as spheres, cylinders and cubes, that would deliver rich scene information

Computer Sciences Department National Institute of Astrophysics, Optics and Electronics



1.2 Problem statement 3

often not been extracted. In most previous work that uses a single image, only planes are
extracted.

In this thesis proposal, we are interested in extract HLS that in previous work not
extract. We believe that this would be useful because a methodology of more diverse struc-
tures (spheres, cylinders, cubes, etc.) would provide better 3D scene information compared
with previous work. In addition, 3D structures such as spheres, cylinders and cubes would
increase the performance in several real-world applications where HLS are used such as
navigation, augmented reality, 3D models, etc. Finally, this method will be easy to replicate
and use in others research (open several research lines and applications) because only will
use as input device an RGB camera facilitating its implementation in personal devices as
cell phones, personal assistants, personal computers, among other.

1.2 Problem statement

There are several single view HLS extraction approaches, unfortunately, most previous works
are limited to plane 3D structure extraction. In practice, this is an important limitation
since other 3D structures such as spheres, cylinders and cubes would deliver more rich scene
information. This is a hard challenge because there is insufficient information recorded in
an image, i.e., there is not depth information from the image pixels or parallax information.

1.3 Research questions

1.- For a single view processing, which features allow us to obtain visual infor-
mation for the recognition of 3D orientation of structures such as planes,
spheres, cylinders and cubes?

First, we will explore the visual features used in previous work (texture, gradient and
color), this because they presented promising results for depth extraction and planar
structures orientation, from a single image. Then, we want to extend the use of these
visual features (texture, gradient, color, etc.) to obtain the orientation of spherical,
cylindrical and cubic structures.

2.- For a single view processing, what methodology allow us to extract 3D
structures such as planes, spheres, cylinders and cubes?

Previous work has shown that the use of geometric classification and a horizon es-
timation are sufficient to provide an automatic single-view reconstruction. For that
reason, we will design a method that model the relationship between the visual infor-
mation (texture, gradient and color) of a patch and key elements orientation (build-
ings, objects, street and grass) to obtain a geometric classification of the scene (3D
orientation). Finally, to extract 3D structures we will use this geometric classification
and a horizon estimation detection.

High-Level Structures Extraction from a Single Image



4 1. Introduction

1.4 Hypothesis

Previous work has shown that visual features (texture, gradient and color) as inputs for
a learning algorithm have promising results for planar structures extraction using a single
image. Therefore, it should be possible to extend the use of these visual features (texture,
gradient, color, etc.) as inputs for a learning algorithm to obtain 3D information that allow
extraction of spherical, cylindrical and cubic structures using a single image.

1.5 Main objective

To develop a high-level structures extraction method, which provides 3D structures such as
planes, spheres, cylinders and cubes from a single image under urbanized outdoor scenes.

1.5.1 Specific objectives

1.- To investigate the visual features (texture, gradient, color, etc.) that provide informa-
tion of HLS extraction (planes, spheres, cylinders and cubes)

2.- To investigate the develop new visual features that provide information of HLS ex-
traction (planes, spheres, cylinders and cubes)

3.- To design a single image processing methodology to provide 3D orientation of urban-
ized images

4.- To develop a 3D reconstruction method using urbanized images labeling and 3D ori-
entation

1.6 Contributions

This research implies the exploration/development of visual features and to develop a
method to deliver a scene geometric classification (3D orientation of scene elements). Both
contributions, could be a promising tool under several computer applications such as aug-
mented reality, navigation, 3D reconstruction, SLAM, among other applications. On the
other hand, the proposed HLS extraction method (using a single image) has to improve the
current state of the art since it will extract more elaborated HLS (spheres, cylinders and
cubes) than plane structures, it is an important contribution in the area of 3D reconstruction
from a single image.

1.7 Publications

At this moment, we have two articles accepted in international conferences, and another
one in a journal (in process to be of submitted):

1.- Osuna-Coutiño J. A. J., Martinez-Carranza J., Arias-Estrada M., Mayol-Cuevas W.,
(2016). Plane Recognition in Interior Scenes from a Single Image. IEEE
International Conference on Pattern Recognition (ICPR), (pp. 1924-1929): in this
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manuscript, we present a new dominant plane recognition method from a single im-
age that provides five 3D orientation (right, left, front, top and bottom). This method
combines three key elements (learning algorithm, contour detection method and seg-
mentation technique) to obtain structures planar recognition and 3D orientation.

2.- Osuna-Coutiño J. A. J., Cruz-Mart́ınez C., Martinez-Carranza J., Arias-Estrada M.,
Mayol-Cuevas W., (2016). I want to change my floor: dominant plane recogni-
tion from a single image to augment the scene. IEEE International Symposium
on Mixed and Augmented Reality Adjunct Proceedings (ISMAR), (pp. 135-140): in
the second manuscript, we present a floor recognition method using a single view.
We have applied our method in an augmented application. In order to infer the floor
light intensities variations, we proposed a rule system that integrates three variables:
texture features, blurring and superpixels-based segmentation.

3.- Osuna-Coutiño J. A. J., Martinez-Carranza J., Mayol-Cuevas W., (2017). A method
to high-level structures recognition from a single image, with augmented
reality. tentative journal: Virtual Reality – Springer: in the third manuscript, we will
present a floor recognition method using a single image, suitable for indoor/outdoor
augmented reality applications. In order to find the relation between image features
(texture and color) and the floor, our method uses a supervised learning algorithm
with regularized logistic regression. To validate our learning algorithm, we will use
five different floor type (grass, road, smooth carpet, tile and squared carpet) with
light intensities variations (we captured images to different times 9:00 am, 1:00 pm
and 5:00 pm.). In addition, we will introduce a new texture feature based on binary
pattern. This feature provides discriminant values for HLS recognition.

In future, we will expect to present a new HLS extraction method using a single view,
key elements labeling and 3D orientation. Also, we will expect to present an augmented
reality application. For both cases, we set as tentative journal/conferences: ISMAR, CVPR
and Computer Vision and Image Understanding.

1.8 Research visit

Research visit at University of Bristol to the group of Prof. Walterio W. Mayol-Cuevas
(01/October/2016 to 30/November/2016), funded by the Royal Society-Newton Advanced
Fellowship with reference number NA140454. In this research visit, we develop a new dataset
and a new texture feature. This dataset is integrated of urbanized images with light inten-
sities variations and different scene perspectives (more details see section 5.1). The new
texture feature is based on binary patterns which provide discriminant values for HLS
recognition (more details see section 5.2). Using the result obtained along the visit, one
article was writhing (in process to be of submitted), this article presents a floor recognition
method using a single image, suitable for indoor/outdoor augmented reality applications.

High-Level Structures Extraction from a Single Image



6 1. Introduction

1.9 Organization of the document

In order to describe our approach in more detail, this thesis proposal has been organized as
follows. In chapters 2 and 3, the theoretical basis is presented, with the fundamental concepts
for the development of this work and the previous works that determine the location of
the research and the comparison with the results that would be obtained; each step in
our methodology is discussed in chapter 4; chapter 5 describes the preliminary experiments
designed to evaluate the feasibility of the proposed solution and the results achieved; finally,
the conclusions and future work are indicated in the last chapter.

Computer Sciences Department National Institute of Astrophysics, Optics and Electronics



Chapter 2

Theoretical basis

2.1 Features

Detection of image features is an important task in computer vision because it allows ab-
stractions of image information. Two types of features can be extracted from an image.
Global features describe the image as a whole; they can be interpreted as a particular
property of the image. On the other hand, local features aim to detect key points/feature
points within the image. In most of the case, HLS extraction from a single image uses
global features to find the relation between the image features and its HLS. In the following
subsections, a description of the global features most used in HLS extraction is presented.

2.1.1 Texture

In computer vision, image texture is a set of metrics to quantify the color variations within
a continuous surface.

Local binary patterns

In computer vision, Local Binary Patterns (LBP) (13) is a visual descriptor type used for
texture classification. LBP were used as first steps to texture classification within circular
pixel neighbors. The LBP provides the texture information in a patch of the image I(x, y)
applying Eq. (2.1.1 - 2.1.4). Where, ς is the neighbor pixel number, τ is the radius, 2p is
a binomial factor, vc is the central pixel value in grayscale and vi,j are the neighbor pixel
values in grayscale.

LBP (ς, τ) =
ς−1∑
p=0

S(vc − vi,j)2p (2.1.1)

The pixel distribution within LBP circle is shown below:

i = τ sin
2πp

ς
(2.1.2)

j = τcos
2πp

ς
(2.1.3)

The binary values are obtained using the Eq. (2.1.4).

S(vc − vi,j) =

{
1 if vc − vi,j ≥ 0,
0 otherwise,

(2.1.4)

Fig. 2.1 shows an example of LBP circles, where each red circle corresponds to the
neighbor pixel position within LBP circles, each red ring is one LBP circle, the green squares
are the pixels of the LBP circles and black lines corresponding to LBP circles limit.

[7]



8 2. Theoretical basis

a) τ = 1, ς = 8 b) τ = 2, ς = 12 c) τ = 3, ς = 16

Fig. 2.1: The images in (a), (b) and (c) show the different radius (τ) and pixel number (ς) in LBP circles.

Co-occurrence matrix

A co-occurrence matrix (14) is a matrix which presents the distribution of co-occurring
pixel values (grayscale values, or colors) in an image. In order to compute the co-occurrence
matrix texture is necessary to determine five texture features in a patch, these features
measure energy, entropy, contrast, homogeneity, correlation Eq. (2.1.5 - 2.1.9). Where, the
numbers of normalized co-occurrence matrix are denoted by ci,j , the averages of ci,j are
denoted by µi, µj and the standard deviations of ci,j are denoted by σi, σj .

energy =
n∑
i=0

n∑
j=0

c2i,j (2.1.5)

entropy =
n∑
i=0

n∑
j=0

ci,j(log ci,j) (2.1.6)

contrast =

n∑
i=0

n∑
j=0

ci,j(i− j)2 (2.1.7)

homogeneity =

n∑
i=0

n∑
j=0

ci,j
1 + (i− j)2

(2.1.8)

correlation =

n∑
i=0

n∑
j=0

(i− µi)(j − µj)√
(σiσj)

(2.1.9)

Law’s texture energy measures

Law’s texture energy measures (15) are a texture feature based on image filtering and
identification of high energy points. Some of the vectors used to obtain of Laws masks are
shown below:

L3 =
[

1, 2, 1
]

Computer Sciences Department National Institute of Astrophysics, Optics and Electronics



2.1 Features 9

E3 =
[
−1, 0, 1

]

S3 =
[
−1, 2, −1

]

From these vectors can be generated 9 different convolution masks by means of the
multiplication of a vertical vector with a horizontal vector. The list of all 33 matrix is:L3L3,
L3E3, L3S3, E3L3, E3E3, E3S3, S3L3, S3E3 and S3S3. A convolution matrix example is
shown below.

L3S3 = LT3 S3

L3S3 =

1
2
1

 [−1 2 −1
]

L3S3 =

−1 2 −1
−2 4 −2
−1 2 −1



2.1.2 Gradient

An image gradient is a change in the intensity of color in an image. In computer vision,
gradient is used for identify a gradual change of color which can be considered as an even
graduation from low to high values.

Nevatia-Batu gradient

Nevatia-Batu (16) is an edge detection feature in which a set of 5 × 5 masks are utilized
to detect the edges in 30o increments. Larger template mask would provide both a finer
quantization of the edge orientation angle and a greater noise immunity, but the computa-
tional requirements increase. Examples of Nevatia-Batu masks are shown in the following

High-Level Structures Extraction from a Single Image



10 2. Theoretical basis

matrices.

0o =


100 100 0 −100 −100
100 100 0 −100 −100
100 100 0 −100 −100
100 100 0 −100 −100
100 100 0 −100 −100

 1

1000
30o =


100 −32 −100 −100 −100
100 78 −92 −100 −100
100 100 0 −100 −100
100 100 92 −78 −100
100 100 100 32 −100

 1

1102

Histogram of oriented gradients

The Histogram of Oriented Gradients (HOG) (17), is a feature descriptor used in computer
vision and image processing to obtain the orientation each pixel. To build the HOG (17),
the local orientation at each pixel is obtained by convolving the image with the mask [1, 0, 1]
and [1, 0, 1]T in the x and y directions separately, to approximate the first derivatives of the
image. This gives the gradient values Gx and Gy, for the horizontal and vertical directions
respectively, which can be used to obtain the angle Eq. (2.1.17) and magnitude m of the
local gradient orientation Eq. (2.1.18).

θ = tan1
Gy
Gx

(2.1.17)

m =
√
G2
x +G2

x (2.1.18)

2.1.3 Color

A color space is an arbitrary agreed upon way to define color. There is any number of ways
to visualize color. Each color space has its different advantages and disadvantages.

YCbCr color space

YCbCr (18) is a color space used as a part of the color image pipeline in video and dig-
ital photography systems, where Y is the intensity channel, and Cb and Cr are the blue-
difference and red-difference respectively. YCbCr from R,G,B pixels is derived as follows: YCb

Cr

 =

0.229000 0.5870 0.114000
0.168736 0.331264 0.500000
0.500000 0.418688 0.081312

RG
B

+ 128

Fig. 2.2 shows an example of YCbCr color space. Where the black box represents the
process for obtaining Y, Cb and Cr components from R,G,B pixels.

Computer Sciences Department National Institute of Astrophysics, Optics and Electronics



2.2 Learning algorithms 11

Fig. 2.2: The conversion of YCbCr color space is show in its Y, Cb and Cr components.

2.2 Learning algorithms

In previous work was demonstrated that learning algorithms are a useful tool for images
interpretation. For computer vision, the use of learning algorithms has shown an important
progress to learn the relationship between visual appearance and the scene structure. In
most of the case, the HLS extraction from a single image uses learning algorithms to find
the relation between the visual features and HLS. For this reason, in the following sub-
sections are described the learning algorithms most used in the related works.

2.2.1 Regularized logistic regression

Regularized logistic regression (19) is a regression model where the dependent variable is
binary, i.e., where it can take only two values, ”0” and ”1”. The logistic regression hypothesis
used to predict dependent variable is presented in Eq. (2.2.1). Where, the logistic regression
classifier hiθ(x) for find the probability that y is equal to the classes i, i.e., hiθ(x) = P (y =
i|x; θ).

hiθ(x) = g(θTj xj) (2.2.1)

The element θj is a parameter adjusted of the logistic regression, the elements xj are the
features. Where, the sigmoid function or logistic function g is expressed as g(c) = 1

1+e−c .
The logistic regression hypothesis is defined as Eq. (2.2.2).

hiθ(x) =
1

1 + e−θ
T
j xj

(2.2.2)

2.2.2 Markov random field

Markov random field (MRF) (20) is a set of random variables with a Markov property
described by an undirected graph. Any Markov random field (with a strictly positive density)
can be written as a log-linear model with feature functions fk such that the full joint
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distribution can be written as:

P (X = x) =
1

z
exp(

m∑
k

wTk fk(xk)) (2.2.3)

The element fk is the feature functions, z is the normalization constant for the model,
m is the total number of elements to analyze, wk is the real value feature vector of elements
to analyze and X denotes the set of all possible assignments of values to all the network’s
random variables x.

2.2.3 Artificial Neural Networks

The Artificial Neural Networks (ANN) are distributed parallel processing structures, i.e.,
these parallel processing structures can do more than one task at the same time. In ANN
the concept is similar the human brain that has the neuron as the elemental unit. The
objective of an artificial neuron is learning from experience how a biological neuron (21).
The artificial neuron operation involves the evaluation of a function from the input data
and the transfer function compute. In addition, ANN synapse is the connection between
two artificial neurons, this permits to share information with other neurons and establish a
communication system. Each synapse has a component called weight, which is adjustable
during the network training (22).

In general, an ANN architecture is structured by the input layer (the examples number
given to training the ANN), one or more hidden layers, and an output layer (outputs number
correspond to the classes number). Fig. 2.3 shows a neural network architecture example.

a) input layer b) n hidden layers c) output layer.

Fig. 2.3: Artificial Neural Networks architecture.
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2.3 Shape From X

Shape From X (SFX) is a collection of methods to infers from image cues the 3D shape of
one surface. These methods using features such as shading, texture, defocus, zoom, etc.

2.3.1 Shape From Shading

The Shape From Shading (SFS) (23) problem computes the 3D shape of a surface from
the brightness of one black and white image. Unlike of other 3D methods (stereo, structure
from motion, SLAM and photometric stereo, etc.), in the SFS problem uses a single image.
The brightness equation is defined as Eq. (2.3.1). Where, I is the brightness image, (x1, x2)
are the coordinates of a point x in the image I, R is the reflectance map, L(x) is the light
vector and n(x) is the normal vector.

I(x1, x2) = R(n(x1, x2)) (2.3.1)

R = cos(L, n) =
L

|L|
.
n

|n|
(2.3.2)

2.3.2 Shape From Texture

Shape From Texture (SFT) (24) is a computer vision technique where a 3D object is re-
constructed from the texture of one single image. SFT uses the term texture gradient in
order to denote the areas that have similar texture. In order to obtain the 3D orientation
of one texture gradient, it is necessary to find the tilt angle. In order to find tilt angle is
use the Eq. (2.3.3), where D is a diagonal matrix, U gives the tilt direction of T and V are
orthogonal matrixes.

Tf>i = UDU1(UV 1) (2.3.3)
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Chapter 3

Related works
3.1 Depth perception from a single image

Saxena et al. (25) presented the first steps to depth estimation from a single image using a
supervised learning algorithm with Markov Random Field (MRF). In order to obtain the
feature vector, this work divides the image into small rectangular patches, and estimate
a single depth value for each patch. For that, it is proposed the use two features types.
The first are absolute depth features (to estimate the absolute depth at a particular patch)
using texture variations, texture gradients, and color. The second are relative depth features
(magnitude of the difference in depth between two or more patches). Finally, this method
to learn depth information is based on the relationship between image features (absolute
features and relative features) and image depth. The image depth was acquired using a
custom built laser scanner unit.

Saxena et al. (26) apply an MRF learning algorithm to capture some monocular cues,
and incorporate them into a stereo system. This method to obtain the monocular cues uses
an MRF to model the relation between the depth information of a patch and the depth of
its neighboring patches. In this case, the depth of a particular patch depends on the features
of the patch, but is also related to the depths of other parts of the image. For example,
the depths of two adjacent patches lying in the same building will be highly correlated.
This work shows that by adding monocular cues to stereo, they obtain significantly more
accurate depth estimations than using monocular or stereo cues alone.

The model presented by Saxena et al. (27) used a supervised learning algorithm with
MRF to find the relation between the image features and its depth. It incorporates them
into a stereo system (method mentioned above), but increases the experiments in exterior
and interior scenes. In addition, a simplified version of the algorithm was used to guide an
autonomous vehicle over unknown terrain.

In Liu et al. (28), an algorithm for depth estimation was presented, unlike other ap-
proaches, they use scene segmentation and the semantic labels to obtain depth information.
This algorithm works in two steps. The first step predicts the semantic class of each pixel
(sky, tree, road, grass, water, building and so on) and the location of the horizon using
MRF. The second step estimates depth. It was demonstrated that knowing the semantic
class of each pixel, depth and geometry constraints can be easily obtained (e.g., ”sky” is far
away and ”ground” is horizontal).

Karsch et al. (29) used a depth transfer approach that has three steps. First, given a
database RGBD images, this method finds ”candidate images” that are similar to the input
image in RGB space. Then, the RGB and depth images (candidate images) are aligned with
the input image. Finally, an optimization procedure is used to interpolate and smooth the
depth values of candidate images, to obtain the depth in the input image. While this is a
very interesting approach to recovering depth, this method needs building a database of
reasonably sized with similar images of the input image.

Mota-Gutierrez et al. (30) provide a fast approach for monocular SLAM initialization by
constructing an initial 3-D map with interest points that are susceptible to be tracked. This

[14]
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work uses a depth learning algorithm based on regularized linear regression over interest
points with FAST algorithm. In addition, this work used a supervised learning algorithm to
find the relation between the characteristics (color and texture) of an image and its depth
information. Eigen et al. (31) presented a depth estimation method from a single image
through training a neural network. To obtain the depth information a neural network with
two components is used: the first component estimates the absolute depth of the scene
and the second refines the local depth. Both neural network components are applied to the
original input, but in addition, the output of the first component is passed to the second
component as an additional feature. In this way, the neural network uses the global depth
prediction for feedback of local depth.

Liu et al. (32) propose a discrete-continuous Conditional Random Field (CRF) model to
take into consideration the relations between adjacent superpixels and depth. More specifi-
cally, this method formulates depth estimation as a discrete-continuous optimization prob-
lem, where the continuous variables (centroid and plane normal of superpixel) encode the
superpixels depth in the input image, and the discrete ones represent relationships between
neighboring superpixels. Zhuo et al. (33) propose an approach to explore the global struc-
ture and the hierarchical representation of scenes for depth inference in interior images using
CRF and a superpixel analysis for region extraction. To estimate depth, each superpixel is
represented as a 3D plane and the method looks for the best depth parameters for each su-
perpixel. In addition, the superpixel edges encode the depth interactions within and across
the different image sessions.

One of the most current and accurate methods for estimating depth from a single image
is the proposed by Liu et al. (34), this method uses a learning model from Convolutional
Neural Networks (CNN) for the identification of the images depth in urban environments.
For that, first, the input image is segmented in superpixels. Each superpixel is cropped as
a patch centered around its centroid, then resize and this patch is used in a CNN to obtain
the depth information. These networks have been trained using datasets that provide both
RGB images and corresponding depth maps such as NYUv2 (35) and KITTI (36) dataset.
In Fig. 3.1 is shown depth maps obtained from a single image.

a) Input image b) Ground-truth c) Eigen et al. (2014) d) Liu et al. (2016)

Fig. 3.1: The images in (c) and (d) show the depth maps obtained from a single image, where the color
indicates depths (red is far, blue is close). Images adapted from Liu et al. (2016) (34).
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3.2 Related work: depth estimation for HLS extraction

In previous work, there are several approaches for depth estimation (section 3.1), although
depth estimation seems to be a different than HLS extraction. It is a promising baseline
for HLS extraction. In current literature, several techniques for HLS extraction use depth
estimation as keystone of their mathematical formulation Cherian et al. (37), Saxena et
al. (11) and Rahimi et al. (38). In Fig. 3.2, as example of HLS extraction based on depth
estimation is shown. Although depth estimation facilitates the planar structure extraction
procedures, nevertheless, in some cases HLS extraction based on depth maps presented
several challenges due to low sharpness in depth information (see Fig. 3.1), even in the
extraction of plane structures.

a) Input image b)Planar structure c) Input image d) Planar structure

Fig. 3.2: The images in (b) and (d) show the planar structure recognition and estimated depth. Images
adapted from Rahimi et al. (2013) (38).

In previous work, learning algorithms combined with depth estimation can be used
to recognize high-level structures through single image analysis. The training could be
performed using visual characteristics information as texture, gradient and color. However,
in some cases the recognition accuracy depends on the training data quality.

a) Input image b)Ground plane c) Input image d) Ground plane

Fig. 3.3: The images in (b) and (d) show the planar structure recognition. Images adapted from Cherian et
al. (2009) (37).

Cherian et al. (37) introduce a methodology for estimating the ground plane struc-
ture and to estimate the 3D location of the landmarks from a robot using a single image.

Computer Sciences Department National Institute of Astrophysics, Optics and Electronics



3.2 Related work: depth estimation for HLS extraction 17

This work used a supervised learning algorithm (MRF) to find the relation between image
characteristics (texture and gradient) and its depth information. In addition, in order to
differentiate the ground plane boundaries on the depth map, this method divide the origi-
nal image into regions of similar textures using superpixels to feedback the depth map and
locate the ground plane. In Fig. 3.3 an example is show, where it is presented a ground
plane structure.

The method presented by Saxena et al. (11) estimates depth maps for single images
of outdoor scenes for creating 3D models with planar structures. For that, this method
segments the image into superpixels and compute three features (texture variations, texture
gradients, and color). These features allow them to estimate both relative and absolute
depth, as well as local orientation. In addition, for each superpixel and respective features,
it uses an MRF to infer a set of “plane parameters” that capture both the 3D location
and 3D orientation. In Fig. 3.4 is show an example, where is presents 3D models with
planar structures. This approach has shown promising results, in images downloaded from
the internet. However, it is limited 3D models with planar structures without providing
information of other structures such as spheres, cylinders, etc.

a) Input images b)3D models c) Input images d) 3D models

Fig. 3.4: The images in (b) and (d) show the extraction of 3D models with planar structures. Images adapted
from Saxena et al. (2009) (11).

Rahimi et al. (38), propose a method to estimate a ground plane structure and its depth
information from a single static image. This methodology works in two steps. The first
step estimates superpixel sections depth using a gradient boosting regression to take into
consideration visual features relation (texture and gradient) with depth in the scene. In the
second step, a RANSAC based plane estimator uses the superpixels depth information in
order to fit with the planes in the scene. In Fig. 3.2 an example is show, it is presented the
ground plane structure and its depth information.

Other approach is the use of a depth sensor to obtain HLS extraction. In the method
presented by Firman et al. (39) it is proposed an algorithm to build a complete 3D model of
a scene, given only a single depth image, i.e., they propose an algorithm that can complete
the unobserved geometry using a prediction computed from the observed geometry. This is
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possible because this method assumes that objects of dissimilar semantic classes often share
similar 3D shape components. This work used a structured Random Forest to prediction
the unobserved depth. In Fig. 3.5 a 3D model with the prediction of the unobserved depth
is shown.

a) Input image b) 3D projection of the depth c) Prediction the unobserved

image depth

Fig. 3.5: The image (a) is the Input image, image (b) show the 3D projection of the depth image and image
(c) presents a 3D model with the prediction the unobserved depth. Images adapted from Firman et al. (2016)
(39).

3.2.1 Single view HLS extraction without depth estimation

There are other approaches for HLS extraction without depth estimation. In those cases,
the idea is to provide a more direct formulation. The approach presented by Kovsecká and
Zhang (40), Micusik et al (41) and McClean et al. (42) show a methodology for extracting
dominant planar structures by analyzing the pattern of the lines and vanishing points of an
image. The method is based on the assumption that there are three orthogonal directions
present in the scene. In Fig. 3.6 a) is shown an example, where it is presented lines colored by
their assignment to the three directions of vanishing points. In addition, to find rectangular
surfaces from this, two pairs of lines, corresponding to two different vanishing points, are
used to localize planar structures. An example of planar structures detected is shown in
Fig. 3.6 b). This approach has shown promising results, in both indoor and outdoor scenes,
and the authors mention that it would be useful for robot navigation and Augmented Reality
(AR) applications. Unfortunately, it is limited to scenes with this kind of planar structures.
i.e., planes which are perpendicular to the ground, but are oriented differently from the rest
of the planes, would not be easily detected.

The approach proposed by Hoiem et al. (43) and Hoiem et al. (10) interprets the ge-
ometric context from a single image using a learning algorithm. This geometric context is
assigned to one of three main classes: ground, sky, and vertical, of which the latter is further
subdivided into left, right, forward, porous and solid. Although this approach is not explic-
itly aimed at HLS detection, it has an understanding the general structure of scenes, as
the image is partitioned into planar structures (ground, left, right, forward) and non-planar
structures (sky, solid, porous). Some examples from their results are shown in Fig. 3.7.
The classification of this approach is achieved using a large variety of features, including
color (summary statistics and histograms), filter bank responses to represent texture, image
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a) Three directions of vanishing points b) Planar structures detected

image

Fig. 3.6: The images in (a) shows the lines colored by their assignment to the three vanishing points directions
and image (b) presents planar structure recognition. Images adapted from Kovsecká et al. (2005) (40).

location, line intersections, shape information and vanishing point. These cues are used in
the various steps of classification, using decision trees and logistic regression to select the
geometric context. In addition, this approach can enable simple 3D reconstruction of a scene
from a single image.

a) Input images b)Geometric context c) Input images d) Geometric context

Fig. 3.7: The images in (b) and (d) show geometric context from a single image: ground (green), sky (blue),
vertical regions (red) subdivided into planar orientations (arrows) and non-planar solid (’x’) and porous
(’o’). Images adapted from Hoiem et al. (2007) (10).

Other approach, presented by Haines and Calway (44), Haines and Calway (12) it is
the planar structures extraction and their orientation using a learning algorithm. For that,
it selects a subset of salient points in the image around which to obtain features. In this
approach it is obtained two features: the first is gradient orientation histograms, which
consist of histograms of edge orientation. Second, the color using RGB histograms, created
by histograms from the red, green and blue channels. To reduce the dimensionality of
the distribution of features in an image region is uses a bag of words. Finally, a learning
algorithm is used to take into consideration the relations between planar surfaces and their
features (gradient orientation and color). An example of planar structures recognition is
shown in Fig. 3.8. This approach has shown promising results, in outdoor scenes. However, it
is limited to planar structures recognition without providing information of other structures
such as spheres, cylinders, etc.
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a) Input images b)Planar recognition c) Input images d) Planar recognition

Fig. 3.8: The images in (b) and (d) show the planar structures recognition and their 3D orientation predicted.
Images adapted from Haines et al. (2015) (12).

3.2.2 Single view HLS extraction challenges and future trends

There are many HLS extraction approaches, however, one of the most promising approaches
and which we are interested in this research is the extraction of HLS from a single image. For
the case of single view exist three approaches. The first approach use learning algorithms
to predicted depth information and optimization techniques in order to fit HLS on depth
information. However, in some cases, HLS extraction based on depth maps present several
challenges due to low sharpness in depth information (Fig. 3.1), even in the extraction of
plane structures. The second approach if for algorithms without depth information such
as: geometric recognition, vanishing points, planar recognition and among others. Although
this approach has shown promising results, in indoor and outdoor scenes, in most of the
case, it is limited to planar structures recognition without providing information of other
structures such as spheres, cylinders, among other. The third approach uses a depth sensor
(cameras RGB-D) to obtain HLS extraction. This approach is very interesting because
recent work proposes an algorithm that can complete the unobserved geometry using a
prediction computed from the observed geometry. Unfortunately, these sensors often deliver
low stability under outdoor scenarios. In Table 3.1, we show a technical comparison between
previous works of HLS extraction from a single image.

As can be seen, in Table 3.1 most previous work are limited to the recognition/extraction
of plane structures. This is an important limitation since other 3D structures such as spheres,
cylinders and cubes would deliver more rich scene information, i.e., could provide a rich 3D
reconstruction of historical images, internet images, personal pictures, holiday photos and
so on. An alternative to extract spheres, cylinders and cubes is the use of the depth sensor
(cameras RGB-D. Unfortunately, these sensors often deliver low stability under outdoor
scenarios. In addition, they are not present in personal devices (cell phones, personal as-
sistants, personal computers, etc.). Finally, the power computation, cost, and size is higher
than RGB sensors. So, an HSL extraction approach that extract lines, planes, spheres,
cylinders, etc., and without depth sensor could achieve high performance (compact system
design, low cost) for real world applications.

In HLS current work, there are several future trends such as: develop embedded devices
(smart cameras) for HLS extraction, positioning localization from a single image, extract
HLS as spheres, cylinders and cubes, among other. All these future trends are interesting
and these will revolutionize the HLS extraction. In this thesis proposal, we are interested in
the 3D structures extraction more rich that previous work (spherical, cylindrical and cubic)
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Table 3.1: Previous works of HLS extraction from a single image

Reference Result Workspace Approach Classifier Dataset

Hoiem D. et

al. (2005) (43)

3D models
(planes)

Outdoor Geometric
recognition

Logistic
regression

Own images

Kovsecká J. &

Zhang. W.
(2005) (40)

Plane
structures

Indoor and
outdoor

Vanishing
points

Normalized
Cross Corre-
lation (NCC)

Own images

Hoiem D. et

al. (2007) (10)

3D models
(planes)

Indoor and
outdoor

Geometric
recognition

Logistic
regression

Own images
and Stanford
dataset

Micusik B. et

al. (2008) (41)

Plane
structures

Indoor and
outdoor

Vanishing
points

RANSAC Own images

Cherian A. et

al. (2009) (37)

3D models
(planes)

Outdoor Depth
recognition

MRF and
superpixels

Stanford
Make3D
Dataset

Saxena A. et

al. (2009) (11)

3D models
(planes)

Outdoor Depth
recognition

Markov
Random Field
(MRF)

Stanford
Make3D
Dataset

McClean E. et

al. (2011) (42)

Plane
structures

Outdoor Vanishing
points

RANSAC and
Expectation
Maximization
(EM)

Zurich
Building
Dataset

Haines O. &

Calway A.
(2012) (44)

Plane
structures

Outdoor Planar
recognition

k-Nearest
Neighbors
(K-NN)

Osian Haines
Dataset

Rahimi A. et

al. (2013) (40)

Planes and
depth

Outdoor Depth
recognition

Gradient
boosting
regression and
RANSAC

Stanford
Make3D
Dataset

Haines O. &

Calway A.
(2015) (12)

Plane
structures

Outdoor Planar
recognition

Relevance
Vector
Machine
(RVM)

Osian Haines
Dataset

Firman M. et

al. (2016) (39)

3D models Indoor Depth
information
(Kinect
Fusion)

Structured
Random
Forest

NYU-Depth
V2 datasets
and own
images

Proposed

method

3D models
(planes,
spheres,
cylinders and
cubes)

Outdoor HLS
recognition

Markov
Random Field
(MRF)

KITTI,
Make3D and
proposed
dataset

from a single RGB image. This is a hard challenge because there is insufficient information
recorded in a single image, i.e., there is not a way of recovering depth information directly
from the image pixels or parallax information (larger motion in the image for closer objects,
in an image pair) to distinguish even relative depths. Nevertheless, recent work has shown
important progress in 3D structure interpretation from a single image. This was achieved
via learning algorithms that learn the relationship between visual appearance and scene
structure.
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Chapter 4

Methodology

4.1 Method

In following sub sections, we will present details about all steps of our methodology to
high-level structures extraction from a single image.

4.1.1 Dataset

In this work, HLS extraction focuses on urbanized outdoor scenes. In real world applications,
several data from a single view include urbanized outdoor scenes, for example, historical
images, internet images, personal pictures, holiday photos and so on. Therefore, we will
use dataset as ”KITTI” (36) and ”Make3D” (45) that have RGB images (of urbanized
outdoor) and ground truth depth. Since the state of the art datasets do not have ground
truth HLS, we will elaborate the ground truth HLS using depth information (HLS volume)
and a manually HLS delimitation.

4.1.2 Key elements labeling

We will use a method that provides labeling of key elements in urbanized environments
(buildings, street, grass, trees, water, etc.). Because if we locate key elements in the image
is possible to provide a different strategy to obtain 3D orientation of each key element (see
subsection 4.1.4). For example, the method presented by Domke (46) uses a CRF-based
classifier to perform elements labeling in urbanized environments as buildings, objects,
street, grass, water, trees, mountains and sky. In Fig. 4.1 b) an image with key elements
labeling is shown.

4.1.3 Visual features

Previous work has shown that features such as texture, gradient and color have promising
results for depth extraction and planar structures orientation. In this work, we want to
extend the use of these visual features (texture, gradient, color, etc.) to obtain orientation
of spherical, cylindrical and cubic structures.

4.1.4 Key elements orientation

We will use a learning algorithm to model the relationship between the visual information
(texture, gradient, color, etc.) and its key element (buildings, street, grass, trees, water,
etc.) to obtain the 3D orientation. In the learning algorithm, a different training to each key
element have to be carried out. This is because each key element needs different strategies
to obtain its orientation. For example, previous work has shown that the use of gradients
facilitates the identification of buildings orientation (12; 44), while in the grass the use
of gradients does not give good results. In Fig. 4.1 c) an image with key elements 3D
orientation is shown.
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4.1.5 HLS extraction

Previous work (10; 47) has shown that the use of geometric classification (3D orientation)
and a horizon estimation are sufficient to provide an automatic single-view reconstruction of
outdoor scenes. Considering the premise that is possible identifying the intersection between
the floor and vertical elements (building, trees, mountain, etc.). So, identifying the floor-
vertical elements intersection and geometric classification (3D orientation) in the image, we
will able to present the vertical surfaces from the floor in 3D form. In Fig. 4.1 d) an image
with HLS extraction or 3D model is shown.

a) Input image b) Key elements labeling

c) Key elements 3D orientation d) HLS extraction
—

Fig. 4.1: The image (a) is the Input image, image (b) show the key elements labeling (buildings in brown
color, objects in orange color, street in purple color, grass in green color, trees in light green color and sky in
white color) with the method presented by Domke (46), image (c) presents the key elements 3D orientation
and image (d) show HLS extraction or 3D model.

4.1.6 Validation

For validation, we will compare results of proposed method with the ground truth of two
databases. The first comparison will use the dataset with the ground truth HLS with depth
information elaborated from the ”KITTI” (36) and ”Make3D” (45) dataset (subsection
4.1.1). In this comparison we will measured the 3D information computed by the pro-
posed method compared with 3D information that is obtained by the ground truth depth
(”KITTI” and ”Make3D”). The second comparison we will be drawn up a dataset with
ground truth of recognition HLS of a set of similar scenes to different schedules to identify
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the robustness of the method to lighting changes. In the second comparison will be mea-
sured the HLS recognition computed by the proposed method compared with the ground
truth HLS.

4.2 Work plan

In Fig. 4.2 the proposed work plan to obtain HLS extraction method is shown. The first year,
we started the carried out the dataset collection, the visual feature exploration/development
and the literature review (activity performed throughout the Ph.D.). In addition, a research
visit was elaborated at the University of Bristol. In this research visit, we develop a new
dataset and a new texture feature based on binary patterns. The second year, we will con-
clude the dataset collection, the visual feature exploration/development, the visual feature
validation to provide discriminant values on urbanized outdoor scenes, labeling methods
exploration and labeling validation on urbanized outdoor scenes. In addition, we will start
to train a learning algorithm to model the relationship between the visual feature and
structures 3D orientation. In the third year, we will validate 3D orientation algorithm on
urbanized outdoor dataset. Furthermore, we will develop the HLS extraction method from
a single image and validate our 3D reconstructions using ground truth depth ”KITTI” (36)
and ”Make3D” (45) dataset. Finally, the fourth year, we will elaborate an AR applica-
tion with HLS extraction, we will write the Ph.D. thesis and we will present the thesis
dissertation.

Fig. 4.2: Work plan.
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Chapter 5

Preliminary results
In this section, we present preliminary results for 3D structures extraction. These results
are integrated of a proposed dataset, a new texture feature based on binary patterns, a
method to obtain dominant structures orientation and an Augmented Reality application
using planar structure recognition.

5.1 Proposed dataset

To validate the HLS extraction features (texture, gradient, color, etc.), a dataset using ur-
banized environments with light intensities variations and different scene perspectives is
proposed. This dataset is important because in HLS extraction is common to reconstruct
elements under different lighting conditions and perspectives. This dataset consists on ur-
banized scenes with 1,500 images (720 × 1280 pixels), five different classes (grass, road,
smooth carpet, tile and square carpet). This 1,500 images have floor labeled and light in-
tensities variations (we captured images to different times 9:00 am, 1:00 pm and 5:00 pm).
We chose the floor because in most cases it is an element that can be captured in large
quantity in the image, it is easy to observe in different perspectives and it has similar tex-
ture (similar to most of urbanized structures). In Fig. 5.1 a) and Fig. 5.1 b) some images
from the proposed dataset are shown.

There are several datasets that provide labeled for the image content. However, in most
of the case these datasets are focus on a specific labeled such as road (36). This is a limita-
tion because urbanized environments are composed of a scenarios variety. There are other
datasets, more rich in terms of information about light intensities variations, but these are
not from urbanized environments (50). Finally, exist other datasets, that provide large set
for different scenes, unfortunately, they provide information for a single perspective (51).
This is a limitation because HLS in urbanized environments are located in different per-
spectives of the scene.

Fig. 5.1: Images of proposed dataset, section a).
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Fig.5.1: Images of proposed dataset, section b).

5.2 The proposed feature

In the HLS extraction procedures, there are several challenging issues that affect the per-
formance, for example, illumination changes, different scene perspectives, dynamic envi-
ronment, etc. In order to provide HLS extraction information, one alternative is the use
of LBP (see subsection 2.1.1) feature because it is simple, fast to compute and robust to
illumination changes. However, the LBP feature is sensitive to noise (see Fig. 5.2), i.e., a
low central pixel change affects the feature robustness.
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a) LBP feature with 56 in central pixel b) LBP feature with 59 in central pixel

Fig. 5.2: Example of LBP sensitivity to noise, where a low central pixel change affects the feature robustness.

In addition, the use of some few pixels within a patch limits the information that can
be used for feature description (see Fig. 5.3). To solve this inconvenience, we propose a new
texture feature based on binary patterns. This new feature is robust to noise, robust to
illumination changes, invariant to rotation and it considers a larger number of pixels than
the LBP and LBP variants.

a) radius= 1, pixel number= 8 b) radius= 2, pixel number= 12 c) radius= 3, pixel number= 16

Fig. 5.3: Information that can be used for LBP feature. The use of some few pixels within a patch limits the
performance in LBP feature. The pixels considered in the LBP computation are proportional to the used
radios, where, green pixels are used in LBP feature and blue pixels are not used in LBP feature.

5.2.1 Input image

The input image is denoted as I(x,y). The image I(x,y) is used to obtain the texture features.
We use an image partition of I(x,y) in a grid Θ to obtain a faster processing. For that,
the grid Θ consists of sections Θw. Section Θw is a finite set of pixels Θw = {x1, ..., xm},
Θw ∈ Θ, where, m is the pixels number within one section Θw ⇐⇒ m is an odd number.
A section Θw has a patch ϑϕ,ω, where the pixels number from patch ϑϕ,ω are proportional
to pixels number in the section Θw. Patch ϑϕ,ω is a finite set of pixels ϑϕ,ω = {x1, ..., xu},
ϑϕ,ω ∈ Θ, where, u is the pixels number within one patch ϑϕ,ω ⇐⇒ u is an odd number.
Where, w denotes the w-th section in Θ, ϕ is the abscissa from grid Θ and ω is the ordinate
from grid Θ. Fig. 5.4 shows a grid example Θ of 3× 2.

High-Level Structures Extraction from a Single Image
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Fig. 5.4: Grid of 3 × 2. Blue squares are the patches ϑϕ,ω of 7 × 7 , orange square is one section Θw and the
gray lines are the sections limits Θw.

5.2.2 Proposed texture feature

We propose a new feature to obtain texture based on binary patterns: BIRRN (Binary
feature: Invariant to Rotation and Robust to Noise). The BIRRN feature considers a set
of neighbor pixels within circular distributions with binary values, where binary values are
added in each circular distribution. We refer to ∆j as the set of neighbor pixels in circular
distributions or BIRRN circles. The BIRRN provides the texture information in a patch
ϑϕ,ω. Fig. 5.5 shows an example of n BIRRN circles ∆j . Where, each red circle corresponds
to one neighbor pixel within BIRRN circles ∆j , each red ring is one BIRRN circle ∆j ,
the green squares are the pixels of the BIRRN circles ∆j and black lines corresponding to
BIRRN circles limit.

Fig. 5.5: Shows an example of BIRRN circles
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5.2.3 Rotation and sensitivity to noise comparison

Fig. 5.6 shows a results comparison between LBP and proposed feature (BIRRN) using
a patch 5 × 5, and considering four test cases (90o, 180o, 270o and 360o image rotations).
Where, the LBP feature provides different results under the four tests, while the proposed
feature delivers equal results for all cases. This is an advantage because in several urbanized
elements (buildings, floors, monuments, etc.) textures values remain constant under different
rotation changes. Therefore, a texture feature invariant to the rotation could be useful
considering learning algorithms since would be possible to decrease its training to detect
urbanized elements and it removes redundant features in detection.

a) Extraction of a patch 5× 5 b) LBP features c) BIRRN features

Fig. 5.6: Rotation comparison between LBP and proposed feature. Image a) presents one patch extraction
of grass and its binarization. Image b) presents the LBP features under different rotations 90o, 180o, 270o

and 360o respectively. Image c) presents the BIRRN features under different rotations 90o, 180o, 270o and
360o respectively.

Fig. 5.7 shows a noise sensitivity comparison between LBP and proposed feature. For
the LBP, a low change of the pixels value affects the LBP performance. For the proposed
method, it provides the same results. This is possible because the proposed feature replaces
the central pixel value used in LBP feature by the grayscale average of BIRRN circles.

a) Examples using LBP feature b) Examples using BIRRN feature

Fig. 5.7: Sensitivity to noise comparison. Image a) presents the binary result of LBP feature in two patches
with a low change of the pixels value, where, the yellow pixels are the central pixel in LBP feature. Image
b) presents the binary result of BIRRN feature in the two patches aforementioned, where, the yellow pixels
are the grayscale average of BIRRN circle (neighbor pixels to central pixel).
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5.2.4 BIRRN, LBP and LBP variants comparison

In this subsection, we presented a comparison between different binary features LBP (13),
CsLBP (52), SLBP (53), XcsLBP (54) and the proposed feature. These 5 binary features
were compared in five different scenes with 5 different classes to detect (grass, road, smooth
carpet, tile and square carpet), the dataset consists of 1,500 images with different light
intensities variations (see subsection 5.1).

For measurement procedures, we defined training features percentage as following: per-
centage of features that has more apparition in a particular element than the other elements
of the image. For example, if we want to detect the grass, and the “feature (1011010) “ap-
pears 7 times in the grass and 5 times in the other elements of the image, this is considered
as training feature. Otherwise, if the “feature (0001101) “appears 5 times in the grass and
7 in the other elements of the image, this is not considered as training feature. We defined
confusion percentage as following: percentage in which training features detect elements
different that the element being detecting. For example, if we want to detect the grass using
LBP feature, and the LBP training features detect 5 features in the sky, 12 features in the
trees and 10 feature in the buildings, the LBP feature has 27 features of confusion. Finally,
we defined recurrence percentage as following: percentage of the training features variation,
considering all images analyzed. For example, if using LBP feature and its training features
are 97 in all images, the LBP feature has 100% recurrence. On the other hand, if we con-
sidering only 2 images and the first image has 100 training features and the second image
has 50 training features, the LBP feature has 75% recurrence.

Experimental results

Table 5.1 shows the average percentage of training features, confusion and recurrence. As
can be seen, the proposed feature provides a greater number of training features and more
recurrence percentage than the other binary features. In addition, although it does not
provide the best result in confusion this may be improved considering a second variable as
presented in following subsection.

Table 5.1: Average percentage of training features, confusion and recurrence

feature training features
percentage

confusion percentage recurrence percentage

LBP (2002) (13) 65.45% 22.07% 66.69%

CsLBP (2009) (52) 59.24% 38.64% 67.72%

SLBP (2013) (53) 66.24% 20.47% 77.22%

XcsLBP (2015) (54) 58.75% 28.87% 71.64%

Proposed feature 72.44% 37.35% 85.02%

Fig. 5.8 and Fig. 5.9 show graphics that compare training features, confusion and
recurrence percentage, considering the 5 binary features (LBP (13), CsLBP (52), SLBP
(53), XcsLBP (54) and the proposed feature) in 5 different scenes (grass, road, smooth
carpet, tile and square carpet).
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a) Training features percentage by scene b) Confusion percentage by scene

Fig. 5.8: BIRRN, LBP and LBP variants comparison, section a). Images a) and b) compare 5 binary features
using the metrics: number of training features and confusion. These metrics were obtained in 5 different scenes
(grass, road, smooth carpet, tile and square carpet).

c) Recurrence percentage by scene

Fig. 5.9: BIRRN, LBP and LBP variants comparison, section b). Image c) compare 5 binary features using
the metric: recurrence. This metric was obtained in 5 different scenes (grass, road, smooth carpet, tile and
square carpet).
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5.2.5 Proposed binary feature to train a learning algorithm

In order to analyze the scope of the proposed texture feature, we train a learning algorithm
(logistic regression) to floor recognition. This learning algorithm was trained using color
(RGB channels) and the training features obtained in subsection 5.2.4 (proposed texture
feature). Fig. 5.10 shows some images of the floor recognition results of a learning algorithm
trained with proposed texture feature and color (RGB channels).

Fig. 5.10: Floor recognition of grass, smooth carpet, road, square carpet and tile respectively. Where, the
blue and red areas are the floor recognition using the proposed binary feature and RGB channels how input
of a learning algorithm.
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Table 5.2 presents the floor recognition percentage (accuracy) and the confusion per-
centage, i.e., the recognition of other elements that is not the floor. In addition, it also also
provides the standard deviation of accuracy and confusion. As can be seen, the floor recog-
nition using a learning algorithm trained with proposed texture feature and color (RGB
channels) has high accuracy and low confusion using urbanized images with light intensities
variations and different scene perspectives. This is possible because the proposed texture
feature has robustness to illumination changes and invariance to rotation.

Table 5.2: The accuracy and confusion

Percentage Standard deviation

Accuracy 90.37% 3.27

Confusion 4.72% 1.34

Work in progress

As work in progress, we considering that the proposed binary feature can be used to obtain
3D orientation of HLS (similar to the method presented in section 5.3). We expect that using
this proposed feature we will achieve more degrees of freedom in 3D orientation. Because the
proposed feature can work with patches smaller than the method presented in section 5.3.
These small patches can be used to obtain a blurring pattern on the HLS that provides its
3D orientation, i.e., these small patches can be used to obtain a different blurring pattern in
each HLS view that provides 3D orientation information (see Fig. 5.11). In addition, faster
processing is expected since the proposed descriptor can process 14 frames HD (640× 480
pixels) by seconds, while, the method presented in section 5.3 can process 1 frame 480p
(640× 480 pixels) by seconds.

a) Input images b)Patches c) Blurring pattern d) 3D orientation

Fig. 5.11: These small patches can be used to obtain a blurring pattern on the HLS that provides its 3D
orientation.
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5.3 3D orientation

Our first steps for to obtain 3D orientation from a single image are presented in the
manuscript (55). In this manuscript, we present a new dominant plane recognition method
from a single image that provides five 3D orientation (right, left, front, top and bottom)
of dominant planar structures (floor, wall and ceiling) in interior scenes. To obtain the 3D
orientation of planar structures, we assume that in each planar structure view has a different
texture information by the factors that affect the image as light variations, blurring and
other factors. Then, we train a learning algorithm (logistic regression) with texture features
to predict the 3D orientation in a planar structure. Fig. 5.12 a) shows an image with 3D
orientation (right, left, top and bottom).

To increase the 3D orientation information provided by learning algorithm, we use the
3D orientation as growing points in a contour image. We use the method proposed in (48)
to obtain the contour image. Fig. 5.12 b) shows growth of the 3D orientation information
in contour image. Finally, all 3D orientation that belongs to the same dominant planar
structure (floor, wall or ceiling) are integrated into a single element. Fig. 5.12 c) shows the
dominant planar structures recognition with their 3D orientation.

a) 3D orientation b)Growth the 3D orientation c) Dominant planar structures

information

Fig. 5.12: 3D orientation of dominant planar structures (floor, wall and ceiling) in interior.

Our method is different from others in that we do not aim at classifying every single
pixel of the image in order to recognise dominant planes. In contrast, we use only those
pixels for which a label could be assigned by our learning algorithm (3D orientation: right,
left, top and bottom) as seeds in a connected component segmentation algorithm, which
grows regions of connected pixels and whose stop criteria is set by the edges found by the
contour algorithm. We intentionally chose interior scenes in order to propose a set of visual
descriptors that could capture the appearance of a dominant plane in such scenes.

5.3.1 Dataset

We use the RGB images and depth images from interior scenes of the ICL-NUIM dataset
(56). This dataset consists of two different scenes (living room and office room) with images
of 640 × 480 pixels. Our training set and testing set consisted of 428 and 220 images,
respectively. Fig. 5.13 shows ICL-NUIM dataset images.
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Fig. 5.13: ICL-NUIM dataset (56)

5.3.2 Experimental results

Table 5.3 is a confusion matrix of 3D orientation classification of proposed method. The
correct guesses percentage are located in the main diagonal of the confusion matrix. In
this main diagonal, the average of correct guesses percentage (3D orientation accuracy of
proposed method) is 60.17%.

Table 5.3: Confusion matrix of 3D orientation classification

Front
orientation

Right
orientation

Left
orientation

Top
orientation

Bottom
orientation

Front orient. 71.47% 2.50% 1.75% 12.50% 0.00%

Right orient. 0.00% 55.33% 9.37% 3.12% 0.00%

Left orient. 0.00% 1.92% 69.63% 1.82% 0.00%

Top orient. 3.57% 2.50% 2.70% 58.86% 0.00%

Bottom orient. 11.07% 0.00% 0.00% 0.00% 45.57%

Table 5.4 presents the confusion of each 3D orientation. We defined confusion as fol-
lowing: the percentage that learning algorithm recognize 3D orientation within elements
that are not dominant planar structures (floor, wall and ceiling). The confusion average of
proposed method is 3.14%.

Table 5.4: 3D orientation confusion

Front
orientation

Right
orientation

Left
orientation

Top
orientation

Bottom
orientation

Confusion 4.72% 2.92% 2.37% 3.84% 1.87%
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Fig. 5.14 shows some images of 3D orientation (right, left, front, top and bottom) of
dominant planar structures (floor, wall and ceiling) in interior scenes of proposed method.

Fig. 5.14: Images of 3D orientation of proposed method.

5.4 Augmented reality

Our first steps for to obtain Augmented Reality applications from a single image are pre-
sented in manuscript (57). In this manuscript, we present a floor recognition method with
virtual information as water, lava and grass (see Fig. 5.17). In order to detect the floor
light variations, we proposed a rule system that integrates three variables: texture features,
blurring and superpixels-based segmentation (49). Fig. 5.15 b) shows an image with floor
light variations detection (green color in Fig. 5.15 b). In order to remove noise (floor light
variations misrecognition), we proposed a technique presented in manuscript (57). Fig. 5.15
c) shows an image without noise using the proposed technique. Finally, the image without
noise provides the area to integrate the virtual information. Fig. 5.15 d) shows an image
with augmented reality.

a) Input image b) Floor detection c) Image without noise d) Augmented reality

Fig. 5.15: Augmented reality method. Image a) presents the input image. Image b) presents the floor rec-
ognized. Image c) presents the floor recognition (blue area) without noise (removing the bad recognition).
Finally, the floor detected in image c) is used how the area to integrate the virtual information (water) to
obtain the image d).
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Our method recognizes the floor in an interior scene and replaces it with an augmented
texture, for which a coarse light model, generated with our approach, it is applied in order to
generate a more realistic augmentation of this virtual texture. Contrary to other methods,
our approach does not aim at classifying every single pixel of the image in order to recognize
the floor, but we exploit the assumption that homogeneous regions (similar in appearance)
are likely to correspond to the same plane (the floor).

5.4.1 Dataset

We use the RGB images and depth images from interior scenes of a proposed dataset. The
dataset was obtained using a sensor Asus Xtion (58). This dataset consists of a laboratory
scene within our campus with images of 640×480 pixels. The proposed dataset has different
floor light intensities. Our training set and testing set consisted of 80 and 250 images,
respectively. Fig. 5.16 shows proposed dataset images.

Fig. 5.16: Laboratory dataset.

5.4.2 Experimental results

Table 5.5 presents the floor recognition percentage (accuracy) and the floor misrecognition
percentage (confusion), i.e., the percentage that proposed method detect elements that are
not floor. Furthermore, we provide the standard deviation of the accuracy and confusion.

Table 5.5: The accuracy and confusion

Percentage Standard deviation

Accuracy 90.18% 2.24

Confusion 3.72% 1.12
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Fig. 5.17 shows some images of augmented reality using our proposed method. The
virtual elements are integrated of water, lava and grass, respectively.

Fig. 5.17: Augmented reality of water, lava and grass.
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Chapter 6

Conclusions and future work
6.1 Conclusions

HLS extractions from a single image is useful because in real world applications several
data are limited to a single view, for example historical images, internet images, personal
pictures, holiday photos and so on. Unfortunately, in most previous work (using a single
image), only planes are extracted. This is an important limitation since other 3D structures
such as spheres, cylinders and cubes would deliver more scene information. In this thesis
proposal, we are interested in extract HLS that in previous work not extract. This would be
useful because an extraction methodology that deliver several different structures (spheres,
cylinders, cubes, etc.) would provide more 3D scene information. In addition, 3D structures
such as spheres, cylinders and cubes would increase the performance in several real-world
applications where HLS are used such as navigation, augmented reality, 3D reconstruction
etc. Preliminary results are encouraging and show the feasibility of our HLS extraction
methodology. As preliminary results in 3D structures extraction, we proposed a new dataset
with light intensities variations, a new texture feature based on binary patterns which
provide discriminant values for HLS recognition, a method to obtain dominant structures
orientation and an augmented reality application using planar structure recognition. As
work in progress, we will use the proposed binary features to obtain 3D orientation of HLS
and analyze the use of other visual features to obtain the HLS extraction.

6.2 Work in progress

As work in progress, we will use the proposed binary feature (see section 5.2) to obtain
3D orientation of HLS. In addition, we will present a new HLS extraction method using a
single view, key elements labeling and 3D orientation. Also, we will expect to present an
augmented reality application. For that, we set as tentative journal/conferences: ISMAR,
CVPR and Computer Vision and Image Understanding.

[39]
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