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Abstract

There are domains, such as biology, medicine, and neuroscience, where the causal relations vary
across members of a population, and where it may be difficult to collect data for some specific
members. For these domains, it is convenient to develop algorithms to learn subject-specific
causal models. Causal probabilistic graphical models have shown to be a tool for modeling
probabilistic causal relations. Most of the algorithms for learning causal graphical probabilis-
tic models are inadequate for learning subject-specific models, especially for subjects with a
limited dataset, since they were designed to find the common causal relations of a population
in the large sample limit. Although there are algorithms for partially learning subject-specific
causal models, they are limited for learning only from observational datasets. The main goal of
this research is to develop a knowledge transfer algorithm for learning subject-specific causal
probabilistic graphical models. We expected to contribute with an algorithm that, transferring
observational and interventional data, together with causal relations of related sources, learns
the structure of causal probabilistic graphical models. We hypothesized that leveraging knowl-
edge from auxiliary sources may help to reliably identify the special causal relations of specific
subjects with a limited dataset. Synthetic causal probabilistic graphical models together with
interventional and observational samples from them will be used to validate our algorithm. Be-
sides, we will plan to exemplify our algorithm in a causal analysis problem of the neuroscience
domain. Preliminary results about the feasibility of extending a score-based discovery causal
algorithm with transfer learning techniques, and also related to an experiment of functional
brain connectivity analysis using probabilistic graphical models are presented.
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Chapter 1

Introduction

Causation is a relation between two particular events where there is an event that affects the
other (Spirtes et al., 2000). It is an important concept for several domains where it is ne-
cessary to understand the process of data generation and infer effects of manipulations over
some elements of a system. In particular, causal probabilistic graphical models (causal PGMs)
are useful tools for these domains, since they encode causal relations between the variables of
systems and provide information to make predictions under manipulations (Heinze-Deml et al.,
2018). In their learning, two aspects are important: causal structure learning and parameters
estimation from data and the causal structure. Causal structure learning consists in discove-
ring the causal relations between the variables of a system either from observations, throught
interventions or both, with the first one being inherently limited. Parameter estimation refers
to estimate the joint probabilistic distribution of the model.

In the learning of causal models, randomized experiments should be used since they provide
information about the effects of certain manipulations over a system. A combination of these
experimental data, together with the measurement obtained from the variables of a system
without performing manipulations (referred to as observational data), allows reliable learning
the structure of causal probabilistic graphical models (causal PGMs).

Some domains, such as biology, neuroscience, and medicine, where the causal re-
lations vary across members of a population (Cooper et al., 2018; Mechelli et al., 2002;
Monleón Getino & Canela i Soler, 2017), demand the learning of subject-specific causal PGMs
that encode the specific causal relations for a particular member of a population. Although
there are many studies in the field of causal PGMs that have explored the structure learning of
causal models, most of these studies are focused on finding population-wide causal PGMs that
encode the common causal relations of a population (Glymour et al., 2019; Malinsky & Danks,
2018; Mooij et al., 2019; Spirtes & Zhang, 2016; Tillman & Eberhardt, 2014). Only a few works
have addressed the problem of learning subject-specific causal PGMs (Jabbari et al., 2018;
Jia et al., 2018; Li et al., 2018).

Learning subject-specific causal PGMs using the existing discovery causal algorithms im-
poses some difficulties. Most of these algorithms find the true causal structure in the large
sample limit (Mooij et al., 2019; Ogarrio et al., 2016; Tillman & Eberhardt, 2014; Zhang et al.,
2018). However, because of the physical condition of the subjects, the difficulty or cost to
carry out experiments, it can be complicated collecting enough data for the learning, espe-
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2 CHAPTER 1. INTRODUCTION

cially for some subjects. Moreover, traditional algorithms, such as PC (Spirtes & Glymour,
1991) and GES (Chickering, 2002), partially find the common casual relations of a population
from a single observational dataset. The heterogeneity of data due to differences in sam-
pling methods and experimental conditions is not considered on these algorithms. Although
there are specialized algorithms that combine multiples dataset considering their heterogene-
ity, they were also designed to find population-wide causal PGMs (Claassen & Heskes, 2010;
Hauser & Bühlmann, 2012; Mooij et al., 2019; Ramsey et al., 2010; Tillman & Spirtes, 2011;
Triantafillou & Tsamardinos, 2015). Recently, more appropriate algorithms to learn subject-
specific causal PGMs have been developed (Jabbari et al., 2018; Jia et al., 2018; Li et al., 2018).
Some of these algorithms assume that there is a sufficient number of samples (Zuk et al., 2012)
for the learning (Jabbari et al., 2018; Li et al., 2018), limiting the learning to observational
data (Jabbari et al., 2018; Jia et al., 2018), or assuming homogeneity in causal relations with
only variations in causal effects across subjects (Li et al., 2018).

Due to the difficulties of existing discovery causal algorithms, mainly regarding for discover
subject-specific causal PGMs from a limited dataset, the aim of this research is the development
of an algorithm for structure learning of subject-specific causal PGMs, that use the knowledge of
datasets composed by experimental and observational samples and auxiliary causal PGMs. In
this document, the research proposal related to this transfer knowledge algorithm is described.

1.1 Motivation

In several domains, there are specific causal relations for some member of a population. For
example in neuroscience, because of differences in the degree of disease affectation and the
recovery process, it has been observed that causal relations between brain regions might vary
across patients (Grefkes & Fink, 2014; Li et al., 2008; Mechelli et al., 2002; Wu et al., 2011).
Studies in genetic and medicine have also suggested variations in causal relations across sub-
jects. Findings in genetics have revealed that there are somatic genome alterations causing
expression changes in specific tumors (Cooper et al., 2018). While in medicine, it has been
observed, for reasons of genetic, and environmental factors or disease stage, that the effect of
drugs could vary across patients (Monleón Getino & Canela i Soler, 2017).

In these domains where there are variations on causal relations across subjects, subject-
specific causal models are suitable for understanding the generation process in specific members
of a population. These models could help to capture the specific causal relations of a particular
subject at some stage of interest, such as disease or recovery stage.

1.2 Justification

This research will address the following reported open problems for the area of causal proba-
bilistic graphical models:

Limited sample sizes (Spirtes & Zhang, 2016): This problem refers to how to correct the
lack of enough data for learning causal PGMs. Most of the existing discovery causal algo-
rithms reliably find causal models when there is a sufficient number of samples (Zuk et al.,
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2012). In some situations, collecting enough data for some specific members of a popu-
lation could be difficult. Transferring instances of auxiliary datasets, or causal relations
from auxiliar causal PGMs, could compensate for lack of enough data and could allow
learning more accurate causal models for specific subjects.

Heterogeneity of data (Bareinboim & Pearl, 2016; Glymour et al., 2019): This issue refers
to finding the appropriate causal PGMs that best adjust to a combination of multiples
experimental and observational datasets, considering that they were collected from diverse
populations, or under different experimental conditions and sampling methods.

1.3 Problem Statement

There are several issues to be considered in the structure learning of subject-specific causal
PGMs. The first one is the lack of enough data for target subject, that we will try to compensate
in this research transferring instances of auxiliary datasets. In the transfer of these datasets, its
relatedness and importance for the learning of the target model should be considered. Another
issue is the heterogeneity of auxiliary datasets. Structure learning of subject-specific causal
PGMs could take advantage of auxiliary domains that only contain observational data, or
that contain a combination of experimental and observational data. However, since they could
come from different subjects, collected conditions may be diverse, such as sampling methods or
different sets of intervened variables. Moreover, each dataset encodes specific causal information
about the state of a particular subject. The heterogeneity of data should be considered in their
transference and fusion. It is of interest for this research to propose a computational solution
that addresses this issue.

In summary, this research will address the problem of recovering the structure of subjects-
specific causal PGMs GT from the knowledge of target subject domain DT , and transferring
knowledge of related source domains DS and tasks TS . Considering that a domain D = (X, D)
is composed of a set of variables X and a dataset with samples of X. And a task T = (G,Θ),
includes a causal PGM defined over X. More specifically, in this research, assuming that
XT = XS , and TT ̸= TS , the following conditions will be explored:

• Target domain DT with a limited observational dataset: Data from a target subject that
were collected without performing manipulations over a XT .

• Source domains DS with observational and experimental datasets: Data from several sub-
jects that were collected after manipulating some subsets of XT . The set of manipulated
variables may vary across the subjects, inclusive may be an empty set.

• Source tasks TS with the structure of subject-specific causal PGMs: The structure of
causal PGMs for several subjects learned in the past.

1.4 Research Questions

The following questions will guide this doctoral research:
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1. Considering that only a limited observable dataset is available for the target subject. How
should instances be transferred of auxiliary observational datasets to find the Markov
equivalence class, under the assumptions of causal sufficiency, and faithfulness, that best
approximate to the true causal structure of a subject-specific PGM?

2. Having learned an approximation to the structure of subject-specific causal PGM with
observational datasets, how should causal relations of causal PGMs from auxiliary tasks
be transferred to improve this learned causal structure?

3. How should instances of auxiliary datasets with observational and interventional samples
be transferred to perform the learning of subject-specific causal PGMs?

4. How should the knowledge transfer of the source domains and tasks be combined to learn
subject-specific causal PGMs?

1.5 Hypothesis

Given a limited observable dataset for the target subject, together with auxiliary sources formed
by observational and experimental datasets, and causal PGMs:

An algorithm to learn the structure of subject-specific causal PGMs, transferring instances
and causal relations from auxiliary sources, under appropriated conditions and considering
their variations because of differences in experimental conditions, yields a causal structure for
a target subject that better approximates to the true causal structure.

Where better approximate means that the obtained causal structure will have a higher
number of correctly oriented edges than those obtained by an algorithm that only uses all
available data for the target subject.

1.6 Objectives

1.6.1 General Objective

The objective of this research is to develop and validate an algorithm to learn the structure of
subject-specific casual PGMs transferring instances from auxiliary datasets with observational
and experimental samples and causal relations of auxiliary causal PGMs.

1.6.2 Specific Objectives

1. To develop and validate an instance-based transfer algorithm for learning the Markov
equivalence class of the structure of subject-specific causal PGMs using auxiliary obser-
vational datasets.

2. To develop and validate a model-based transfer learning algorithm for learning the struc-
ture of subject-specific causal PGMs.
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3. To develop and validate an instance-based transfer algorithm for learning the structure of
subject-specific causal PGMs from auxiliary datasets with a combination of observational
and experimental samples.

4. To develop and validate a hybrid algorithm for learning the structure of subject-specific
causal PGMs that combine the instances transfer of auxiliar datasets with the model
transfer of auxiliar causal PGMs.

5. To exemplify the knowledge transfer learning algorithm, applying it to causal analysis in
the neuroscience domain.

1.7 Contributions

• An algorithm that helps to identify the undefined causal directions of Markov equivalent
models transferring causal relations of auxiliar causal PGMs under appropriate condi-
tions.

• An instance-based transfer learning algorithm that finds the subject-specific causal PGM
that adjusts with the combination of observable instances of target dataset with observ-
able and experimental instances of auxiliar datasets.

• An hybrid knowledge transfer learning algorithm that integrates the instances and model
transfer for learning the structure of subject-specific causal PGMs.

1.8 Scope and Limitations

It is considered in this research that a subject is an experimental unit from an experiment
of a particular domain. Moreover, it is assumed that all auxiliary datasets and causal PGMs
come from the same experiment that was performed under different conditions. Hence, auxiliar
datasets, auxiliar causal PGMs, and target dataset share the same set of variables. Besides it
is assumed that although there are variations in the causal relations across subjects, auxiliar
domains and target subjects share a set of causal relations. Therefore, the algorithm to be de-
veloped will recover the structure of target causal PGMs reusing instances and causal relations
of auxiliary domains under the interventionist framework proposed by Pearl (2000).

1.9 Structure of the Proposal

The research proposal document has been organized in five chapters. Fundamental concepts
for the research are presented in Chapter 2. Several related works are analyzed in Chapter
3. In Chapter 4 the methodology is presented. Finally, some preliminary results are shown in
Chapter 5.



Chapter 2

Theoretical Basis

In this chapter, concepts related with Probabilistic Graphical Models and Transfer Learning
are presented.

2.1 Probabilistic Graphical Models

Probabilistic graphical models (PGMs) are a compact, efficient and understandable represen-
tation of a joint probability distribution of a set of variables. In these graphical models, nodes
represent the variables of a domain, and edges, the probabilistic relations between the variables.

Probabilistic graphical models include directed models that upon adding the causal seman-
tics, are used to represent causal relations. The theory related to these PGMs, known as causal
Bayesian Networks, will be described in this section.

2.1.1 Probability

Random variables might take a countable (called discrete variables) or an uncountable num-
ber of possible values (called continuos variables). For a set of discrete random variables,
their joint probability distribution is defined as follows:

Definition 2.1. (Neapolitan, 2004) The joint probability distribution of a set of discrete
random variables, X = {X1, X2, ..., Xn}, is a function that assigns a real value to each
combination of the values of the variables in X and satisfies the following conditions:

1. For each combination of the values of the variables in X,

0 ≤ P (x1, x2, ..., xn) ≤ 1.

2. ∑
x1,x2,...,xn

P (x1, x2, ..., xn) = 1.0.

When X is a set continuous random variables, a density joint function is used to define the
joint probability distribution as follows:

6
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Definition 2.2. (Koller et al., 2009) A function g(·), called joint density function, spec-
ifies a joint probability distribution of a set of continuous random variables,
P (X1, X2, ..., Xn), if:

1. For all values x1, x2, ..., xn,

g(x1, x2, ..., xn) ≥ 0.

2. g(·) is an integrable function, such that,∫
x1,x2,...,xn

p(x1, x2, ..., xn)dx1...dxn = 1

3. For any choice of a1, a2, ..., an and b1, b2, ..., bn,

P (a1 ≤ X1 ≤ b1, ..., an ≤ Xn ≤ bn) =

∫ b1

a1

...

∫ bn

an

g(x1, x2, ..., xn)dx1...dxn

The differences between two joint probability distributions could be estimated using the
Kullback-Leibler divergence (KLD) in the following form:

Definition 2.3. (Campos, 2006) Given two joint probability distributions defined over
X = {X1, X2, ..., Xn}, PE(X), PS(X), the KLD difference between PE and PS is,

DKLD(PE , PS) =
∑

x1,x2,...,xn
= PE(x1, x2, ..., xn)log

(
PE(x1,x2,...,xn)
PS(x1,x2,...,xn)

)
Between the random variables of a probabilistic model, there may be relations of indepen-

dence which are defined as,

Definition 2.4. (Koller et al., 2009) A variableX is independent of variable Y in a distribution
P , written as X ⊥⊥ Y , iff P (x, y) = P (x)P (y) for all values x, y.

Particularly, PGMs represent a set of conditional independence between random variables
which are defined as,

Definition 2.5. (Koller et al., 2009) In a distribution P , a variable X is conditionally inde-
pendent of variable Y given a variable Z, written as X ⊥⊥ Y |Z, iff P (x, y|z) = P (x|y)P (y|z)
for all values x, y, z.

2.1.2 Graphs

Others important concepts for PGMs are those related to graph theory.

Definition 2.6. A graph is a pair G = (V,E) formed by a set of nodes V = {V1, V2, ..., VN},
and a set of edges E ⊂ V ×V.

Two nodes are adjacent in a graph G, if there is an edge associating them. An edge
(Vi, Vj) ∈ E, may be undirected (Vi − Vj) or directed (Vi → Vj) depending whether the order
matter, but not of both types. If there is an edge between each pair of nodes in a graph, it
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is called complete graph. When a graph only has undirected edges is called undirected
graph, and if it only contains directed edges is called a directed graph. In a directed edge
in the form V1 → V2, V1 is said to be the parent of V2, and V2, the child of V1. The set of
parents of a node V is denoted as Pa(V ).

Within a graph G, a path between two nodes V0 and Vk is formed by a sequence of nodes,
(V0, V1, ..., Vk), starting at V0 and ending at Vk, where k ≥ 1 and Vi, Vi+1 ∈ E for i = 0, 1, ..., k−
1. This pair of nodes Vi, Vi+1 in the sequence is said to be subsequent nodes. If there is an
undirected edge for each pair of subsequent nodes in a path, it is named undirected path;
and named directed path, if there is a directed edge. A directed path from V0 to Vk together
with the edge Vk → V0 form a directed cycle. A directed graph in which there are no directed
cycles is called a directed acyclic graph (DAG). If an acyclic graph contains directed and
undirected edges, it is called a partially directed graph (PDAG). If there is an undirected
edge for each pair of subsequent nodes in a path, it is named undirected path; and named
directed path, if there is a directed edge. A directed path from V1 to V2 together with the
edge V2 → V1 form a directed cycle. A directed graph in which there are no directed cycles is
called a directed acyclic graph (DAG). If an acyclic graph contains directed and undirected
edges, it is called a partially directed graph (PDAG).

The undirected graph resulting from ignoring the direction of edges in a DAG is the skele-
ton of the DAG. A v-structure in a DAG is an ordered triple of nodes (X,Y, Z), such that,
the edges X → Y and Y ← Z are in the DAG, and there is no edge between the nodes X,Z
(Chickering, 2002). Two DAGs are equivalent if and only if they have the same skeletons and
the same v-structures (Kalisch & Bühlmann, 2014). A set of equivalent directed acyclic graphs
is called a Markov equivalence class (He et al., 2015).

Within a DAG, it is possible to identify conditional independences between random vari-
ables, using a criterion known as d-separation,

Definition 2.7. (Spirtes et al., 2000) In a DAG G, if X and Y are nodes, X ̸= Y , and W a
set of nodes that does not contain X or Y , then X and Y are d-separated given W in G, iff
there exists no undirected path U between X and Y 1, such that, every node V on U in the
form V1 → V ← V2, has a descendent in W, and no other node on U is in W.

When U, V and W are disjoint sets of nodes in G, and U ̸= ∅,V ̸= ∅, it said that U and
V are d-separated iff every pair (U, V ) ∈ U×V is d-separated given W.

2.1.3 Associative Probabilistic Graphical Models

Definition 2.8. (Sucar, 2015) A probabilistic graphical model defined over a set of variables
V = {X1, X2, ..., Xn}, is a pair (G,Θ), where G = (V,E) is the graph, with E ⊂ V ×V that
represents the structure of the model; and Θ = {θ(yi)},Yi ⊂ V is the set of local functions
that defines the parameters of the model. The product of local functions defines the joint
probability distribution of V.

Bayesian Networks are a type of Probabilistic Graphical Models in which their structure is
formed by DAGs, formally:

1A resulting path between X and Y after ignoring the direction of edges.
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Definition 2.9. (Koller et al., 2009) A Bayesian Network (BN) defined over a set of vari-
ables V = {X1, X2, ..., Xn} is a pair (G,Θ) where G is a directed acyclic graph, and Θ = {θi}
is the set of local functions in the form θi = P (xi|pa(Xi)).

Parametrically, a Bayesian network represents the joint probability distribution over V.
The structure of Bayesian networks represents a set of conditional independences. Each node
in a BN is conditionally independent of its non-descendants given its parents. This last property
allows to estimate the joint probability distribution over V in the form:

P (x1, x2, ..., xn) =

n∏
i=1

P (xi|pa(Xi)) (2.1)

This factorization of the P(V) relative to a graph G is known as Markov compatibility.
Formally,

Definition 2.10. (Pearl, 2000) If a probability function P admits the factorization given by
equation 2.1, relative to a DAG G, is said that P represents G, and, P is compatible or
Markov relative to G.

2.1.4 Causal Probabilistic Graphical Models

According to Spirtes et al. (2000), causation is a relation between two particular events where
there is an event that generates an effect on another one. It is defined that causation is a
relation:

Transitive: If an event A causes and event B, and then B causes another event C, then A
causes C.

Irreflexive: an event cannot cause itself.

Antisymmetric: if an event A causes an event B, then B is not a cause of A.

Information about causal relations between variables is encoded in causal probabilistic graphical
models2. In particular, Bayesian Networks are used for modeling causal relations, because
they provide facilities to represent and infer effects of actions. In order to Bayesian networks
encode reliably causal relations, a set of assumptions is required in their construction that is
summarized in the following definition:

Definition 2.11. (Pearl, 2000) Let P (v) be a probability distribution over a set V of variables,
and let a P (v|do(X = x)) denote the resulting distribution from the intervention do(X = x)
that sets a subset X of variables to constants x, and delete all incoming edges to X. Denote
by P∗ the set of all interventional distributions P (v|do(X = x)), X ⊆ V, including P (v)
that represents no intervention (i.e. X = ∅). A DAG G is said to be a causal Bayesian
network (CBN) compatible with P∗ if and only if the following three conditions hold for
every distribution in P∗:

1. P (v|do(X = x)) is Markov relative to G;
2Although there are several types of causal models, in this research we consider the causal PGMs.
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Figure 2.1: An example of (a) basic causal graphs and (b) its corresponding modified causal
graph due to the intervention.

2. P (vi|do(X = x)) = 1 ∀Vi ∈ X whenever vi is consistent with x;

3. P (vi|do(X = x),pa(Vi)) = P (vi|pa(Vi)) ∀Vi /∈ X whenever pa(Vi) is consistent with x.

The set of assumptions considered in this definition allow differentiating Bayesian net-
works from causal Bayesian networks. This definition assumes that the structure G of a causal
Bayesian Network complies with the following rule:

Definition 2.12. (Spirtes et al., 2000) G = (V,E) represents a causal graph, when there is
a directed edge X → Y in E iff X is a direct cause of Y relative to V.

Considering that a direct cause between variables is defined as follows:

Definition 2.13. (Zhang & Spirtes, 2008) X is a direct cause of Y relative to V, if there
exists x1 ̸= x2 and z with Z = V \ {X,Y }, such that P (y|do(X = x1),Z = z) ̸= P (y|do(X =
x2),Z = z).

In this definition of direct cause, an intervention do(X = x) is considered a mechanism that
fixesX to value x, and delete all direct causes overX (the incoming edges toX). The reason for
this graph surgery is due to these direct causes of X have no influence during the intervention.
Moreover, the intervention makes the intervened variable independent of its direct causes. In
Figure 2.1 are shown some examples of interventions.

Finally, in the definition of causal Bayesian networks is assumed that is possible to estimate
the effects of interventions from the pre-intervened joint probability distribution P (v) and the
graph of the causal Bayesian network. Considering that an intervention do(Xi = x′i) transforms
the causal graph and the pre-intervened joint probability distribution P (v), the interventional
probability distribution is estimated as follows:

P (v|do(Xi = x′i)) =

{ ∏
j ̸=i p(xj |pa(Xj)), if xi = x′i

0, if xi ̸= x′i
(2.2)

Where P (v) =
∏

xi
P (xi|pa(Xi)) is obtained from passive observations of the set V of the

causal system (without performing any intervention).
In summary, causal Bayesian networks are PGMs more expressive than Bayesian networks,

since in addition to encode probabilistic dependencies between the variables, they encode causal
information. An example of a causal BN with the statistical and causal relations represented
in it is presented in Figure 2.2.
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Figure 2.2: Example of causal Bayesian Network with some of (a) the causal and (b) the
probabilistics relations represented.

With a causal Bayesian network it is possible to formulate three types of questions
(Pearl & Mackenzie, 2018):

Associative: This type of question involves seeing and observing the environment. An exam-
ple query is, what does a symptom tells me about a disease?

Interventional: This type of question involves doing and intervening in the environment.
These are prospective questions about what are the effects if we intervened the environ-
ment. An example query is, what if I take aspirin, will my headache be cured?

Counterfactual: This type of question involves the actions of imagining, retrospection, un-
derstanding the environment. These are retrospective questions about what would have
happen if we took another action than one we are currently observing. An example query
is, what if I had not been smoking?

2.1.5 Structure Learning of Causal Bayesian Networks

The learning of causal Bayesian networks is often performed in two steps: learning of the
causal structure, and estimation of parameters from data and the causal structure. The type
of datasets used in the learning of the causal structure may be:

Observational: Data corresponding to measurements made under natural conditions of a
causal system.

Experimental: Data corresponding to measurements made under different disturbances of
the system caused by external interventions.

Ideally, experimental data should be used in the structure learning of causal BNs. How-
ever, these data are difficult to collect, because it is complex, costly, or time-demanding to
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Figure 2.3: An example with (a) a set of equivalent DAGs and (b) its corresponding MEC.

perform experiments. Therefore, several algorithms have been developed to learn partial causal
structures only from observational data. These algorithms, known as causal discovery algo-
rithms, often relies on a number of assumptions including but not limited to the following
(Spirtes & Zhang, 2016):

Causal Sufficiency (CS) Every common cause of two or more variables in a set of variables
V, also is in V.

Causal Markov Condition (CMC) Each variable in the causal structure is independent of
its non-effects given its directed causes.

Faithfulness Condition (FC) Each true conditional independence between variables is en-
tailed by the causal structure.

Causal Minimality Condition (CLC) No proper subgraph of the true causal G over V,
with joint distribution P , satisfies that P is Markov relative to G.

The causal discovery algorithms, from the analysis of observational data and under several
assumptions, can only recover a set of structures. Specifically, directed acyclic graphs equiva-
lents to the true structure of a causal BN are recovered and grouped in a Markov equivalence
class (MEC). An example of a set of Markov equivalent DAGs and the corresponding MEC is
shown in Figure 2.3.

Three types of discovery causal algorithms have been proposed: Constraint-based, Score-
based, and based on functional causal models (Glymour et al., 2019; Zhang et al., 2018).

Constraint-based algorithms

These algorithms perform hypothesis tests to search the MEC that is consistent with
the conditional independence found in the data. Popular algorithms of this type include
PC (Spirtes & Glymour, 1991) and its variant, the Fast Causal Inference algorithm (FCI)
(Spirtes et al., 1995). PC recovers a MEC that includes the true causal structure under CS,
CMC and FC assumptions. While FCI does not require CS and recovers MECs under CMC
and FC assumptions. These algorithms use statistical tests of conditional independence, which
require a representative sample size to be reliable (Zhang & Spirtes, 2016). In addition, some
typical tests impose restrictions over the distribution of the data (Malinsky & Danks, 2018).
PC starts with a complete graph, and in each iteration, the algorithm deletes edges when the
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pairs of variables are conditionally independent given a subset of variables. In each iteration
of the algorithm, the size of conditional variables subset is incremented, until there are no pair
of adjacent nodes, (X,Y ), in which, all variables in the conditional subsets are adjacents to X
or Y (Glymour et al., 2019).

Score-based algorithms

These algorithms find the MEC that includes the true causal graph by optimizing a score
function. In the space of MECs, the MEC with the highest score is searched. Algorithms,
such as Greedy Equivalence Search (GES) (Chickering, 2002) including its extensions Greedy
Fast Causal Inference (GFCI)(Ogarrio et al., 2016), Fast GES (FGES) (Ramsey et al., 2017)
perform a local heuristic search that reliably finds the best MEC in the limit of infinite data and
under the four causal assumptions (Guo et al., 2018; Zhang et al., 2018), with the exception of
GFCI that does not require CS.

GES is a two-stage algorithm that starts with an empty graph and heuristically searches
for adding and deleting edges that improve the score function. Best edges are added in the
first stage, and in the second stage, edges which improve the score function are removed. The
stages of GES algorithm are described in Algorithm 1.

In the GES algorithm, Bayesian Dirichlet equivalent and Uniform (BDeU) score function is
used for learning MECs defined over discrete variables. BDeU score estimates the probability
that a dataset D adjust with the structure G of a PGM as follows (Chickering, 2002):

BDeU(G, D) = score(G, D) =

n∏
i=1


qi∏
j=1

Γ(αij)

Γ(αij +Nij)

ri∏
k=1

Γ(αijk +Nijk)

Γ(αijk)

 (2.3)

where,

Γ(·) is the Gamma function,

n is the number of nodes in G,

qi is the number of values of PaT (Xi),

ri is the number of values of Xi,

Nijk is the number of cases in which Xi = k and its parents pa(Xi) = j,

Nij =
∑

k Nijk,

αijk = α
riqi

is a Dirichlet prior parameter, and αij =
∑

k αijk.
BDeU score assigns the same score to equivalent structures and also it is descomposable at

node level. It can be expressed as product of local scores in the form:

localScore(Xi,Pa(Xi), D) =

qi∏
j=1

Γ(αij)

Γ(αij +Nij)

ri∏
k=1

Γ(αijk +Nijk)

Γ(αijk)
(2.4)

This local score estimates the adjustment of the data D with a local structure formed by
Xi ∈ X and its parents Pa(Xi).
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Algorithm 1: GES algorithm

Algorithm GES()

Input: V
D: a observational dataset from V

Output: G = (V,E): A partially
directed graph

G ← ∅
sbest ← −∞
/* First stage: Adding edges */

repeat
foreach E′ = (X,Y ), E′ /∈ E do

if validInsert(E′,G) then
G′ ← (V,E ∪ {E′})
s← score(G′, D)
if s > sbest then

sbest ← s
Ebest ← E′

end

end

end
E← E ∪ {Ebest}

until (sbest < sant)
/* Second stage: Deleting edges */

repeat
sant ← sbest
foreach E′ = (X,Y ), E′ ∈ E do

if validDelet(E′,G) then
G′ ← (V,E \ {E′})
s← score(G′(V,E′), D)
if s > sbest then

sbest ← s
Ebest ← E′

end

end

end
E← E \ {Ebest}

until (sbest < sant)
return G

Function validInsert((X,Y ),G)
T← {T}, (T, Y ) ∈ G, (T,X) /∈ G
NAYX← {Z}, (Z, Y ), (Z,X) ∈ G
if T ∪NAYX is a complete subgraph and
every semidirected path from Y to X
does not contain any node in NAYX
then

return True
end
return False

Function validDelet((X,Y ),G)
NAYX← {Z}, (Z, Y ), (Z,X) ∈ G
H0← NAYX
foreach H ⊂ H0 do

if NAYX \H not is a complete
subgraph then

return False
end

end
return True
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Algorithms based on functional causal models

In these algorithms causal relations are described by functional models in the form of
Y = f(X, ϵ), where ϵ is the noise term, and X,Y are the variables cause and effect, res-
pectively (Zhang et al., 2018). Linear models (Montero-Hernandez et al., 2018), Linear Non-
Gaussian Model (LiNGaM) (Shimizu et al., 2006), NonLinear Additive Noise Model (ANM)
(Hoyer et al., 2009), and the Post-Nonlinear (PNL) causal model (Zhang & Hyvärinen, 2009)
are typical functional models. Algorithms based on functional causal models learn causal re-
lations with more detail, and in some cases, when some appropriate constraints are imposed
to the functional model, a unique DAG within a Markov equivalence class can be identified
(Zhang et al., 2018).

2.2 Transfer Learning

Transfer learning is a methodology to learn models from data of different domains. Its main
aim is to improve the performance of models by leveraging knowledge from auxiliary domains.
Consequently, it is a desirable methodology to solve problems in domains where collecting data
is difficult or impossible.

Domains and tasks are two important elements in the transfer learning methods. A do-
main, D = (X , P (X)), is composed by two parts: a feature space X and a marginal probability
distribution P (X), where X = {X1, X2, ..., Xn} is a set of features. A task, T = (Y, f(·)) is
formed by a label space Y, and a predictive function f(·) which could be learned from a training
dataset D = {(xi, yi)} composed by pairs (xi, yi),xi ∈ X and yi ∈ Y (Weiss et al., 2016).

Considering the definitions of domain and task, a formal definition of transfer learning is
as follows:

Definition 2.14. (Pan & Yang, 2010) Given a source domain DS , a source task TS , a target
domain DT , and a target task TT , transfer learning is a process that helps to improve the
performance of the predictive function3 f(·)T in TT , using the knowledge in DS and TS , where
DS ̸= DT or TS ̸= TT .

The conditions DS ̸= DT or TS ̸= TT of the transfer learning definition implies the following
cases (Aggarwal, 2014):

Case 1) The source and target domains have the same feature space, XS = XT , but differ
in the marginal distributions, P (XS) ̸= P (XT ). Transfer learning under these conditions
is called homogeneous transfer learning.

Case 2) The source and target domains differ in their feature spaces, i.e. XS ̸= XT . Trans-
fer learning under these conditions is called transfer learning across heterogeneous
feature spaces.

Case 3) Target and source tasks differ in their label spaces, i.e. TS ̸= TT . This is
another case of heterogeneous transfer learning known as transfer learning across
heterogeneous label spaces.

3The accuracy of the predictive function.
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2.2.1 Issues on Transfer Learning

Ideally, a transfer method must improve the performance of a target task, avoiding transfer
knowledge which affects it. This last phenomenon is known as negative transfer and formally
is defined as follows:

Definition 2.15. (Weiss et al., 2016) Let a source domain DS , a source task TS , a target
domain DT , a target task TT , a predictive function fT1(·) learned with only DT , and a predictive
function fT2(·) learned with a transfer learning process, combining DT and DS . Negative
transfer occurs when the performance of fT1(·) is greater than the performance of fT2(·).

In addition to the above, the design of effective transfer methods should consider the fol-
lowing three issues:

What to transfer?: It refers to defining which parts of the knowledge (features, parameters
of f(·), or labels) could be transferred across domains or tasks. The common knowledge
between different domains which helps to improve the learning of a target task should be
selected.

How to transfer?: It refers to developing algorithms that combines the knowledge of related
domains in the learning of a target task.

When to transfer?: It refers to defining heuristics that identify in which situations the
knowledge should and should not be transferred.

2.2.2 Transfer Learning Categories

Transfer learning approaches according to the form of information transfer are classified in the
following four categories (Weiss et al., 2016; Aggarwal, 2014):

Instance-based transfer learning: The methods in this category transfer the instances of
source domains to a target domain. The instances, after re-weighting or re-sampling in
the target domain, are used to learn a target task. Two issues are considered: no labeled
data are available, and few data are available.

Model parameter-based transfer learning: In this category, the methods assume that
the source and target tasks share some parameters or prior distributions of the hyper-
parameters of the models. Hence, some methods reuse the parameters of source tasks
in the target predictive function. Other methods, learn multiple models from source
domains, and then they are weighted and combined to construct a target model.

Feature-based transfer learning: The aim of these methods is to learn the best feature
representation for the source and target domains. This category includes two types of
methods: asymmetric feature transformation and symmetric feature transformation. The
first category of methods is applied when there are differences between the conditional
distributions of source and target domains caused by the difference between the features
of source and target domains. The features of source domains are weighted by these
methods to reduce these difference. In the second category of methods, finding a set of
latent features reduces the difference between the marginal distributions of source and
target domains.
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Relational-based transfer learning: These methods use a relationship between the source
and target domains to construct a target predictive function. The methods in this ca-
tegory assume that some relationships between objects or instances are similar across
domains or tasks. Hence common relationships are extracted and re-used in the target
task.

2.2.3 Transfer Learning in Probabilistic Graphical Models

In transfer learning for probabilistic graphical models, a domain D = (V, D) is composed by a
set of variables V and a dataset D that includes a set of samples from V. A task T = (G,Θ))
includes a PGM defined over V. Considering these elements, the problem of transfer knowledge
for learning probabilistic graphical models is defined as follows:

Definition 2.16. (Jia et al., 2018; Zhou et al., 2016) Given a source domain DS , with its
corresponding source task TS , a target domain DT with its corresponding target task TT ,
transfer learning is a process that helps to improve the quality of the probabilistic graphical
model in TT , using the knowledge in DS and TS , where TS ̸= TT .

Where the quality of a PGM is the accuracy of its associate joint probability distribution
P (x), and the number of correctly oriented edges of the G.

In transfer learning for PGMs, the relation between DS and DT implies the following cases:

Homogeneous transfer learning: The source and target domains have the same set of
variables, VS = VT , but differ in their joint probability distributions, P (VS) ̸= P (VT )
(which are estimated from DS and DT , respectively) (Jia et al., 2018).
Heterogeneous transfer learning: The source and target domains differ in their sets
of variables, i.e. VS ̸= VT (Zhou et al., 2016).



Chapter 3

Related Work

In this chapter, a review of related works with this research are presented. Specifically, algo-
rithms for learning probabilistic graphical models, including transfer learning, learning from
multiple datasets, and subject-specific learning, are analyzed.

The concepts of population-wide and subject-specific models are used in the review.
Population-wide model is used to refer to models that adjust with the characteristics of the
all population, while the subject-specific model, to refer to models that adjust with the special
characteristics of a subject of population. In the case of a population-wide causal probabilis-
tic graphical model (in short population-wide causal model), it refers to models encoding the
common causal relations and their corresponding local probabilistic distributions to a popu-
lation. While subject-specific causal probabilistic graphical model (in short subject-specific
causal model) is used to refer to models that encode the corresponding causal relations with
their probabilistic parameters of a particular individual.

3.1 Transfer for Learning Probabilistic Graphical Models

Learning associative probabilistic graphical models applying transfer learning techniques has
been explored by diverse works. For example, Zhou et al. (2016) provides a transfer framework
to learn the parameters of Bayesian networks. This framework includes a relevance metric and
a fusion function that combines optimally the knowledge of relevant domains. Additionally,
Luis et al. (2010) and Cameras et al. (2013) proposed transfer algorithms to learn Bayesian
networks and dynamic Bayesian networks, respectively. In these works, a modification of the PC
algorithm, using local and global similarity measures for determining the relevance of auxiliary
domains in the independence tests between variables, is proposed to learn the structure of BNs.
The local parameters are estimated from auxiliary domains which have the same local structure
than the target. For its part, Niculescu-Mizil & Caruana (2007), Oyen & Lane (2013), and
Oates et al. (2016) provide transfer algorithms to learn simultaneously the structure of multiple
Bayesian networks. Assuming that all tasks share the same order in the variables, the best
structures can be searched using a global Bayesian score (Niculescu-Mizil & Caruana, 2007) or
a local Bayesian score (Oyen & Lane, 2013). This restriction is not required for the algorithm of
Oates et al. (2016) that applies an integer linear programming method to estimate the multiple
structures.

18
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The mentioned algorithms were designed to learn associative models that do not consider
the framework to learn causal models from observational data: Causal Markov Condition,
Faithfulness, Minimality, and Causal Sufficiency conditions. Hence, the PGMs learned with
these algorithms cannot be interpreted as causal models. The most related algorithm to our
proposal was provided by Jia et al. (2018). They propose a homogeneous transfer algorithm for
learning the structure of causal Bayesian networks, which assumes Causal Sufficiency, Causal
Markov Condition, and Faithfulness conditions. This algorithm, which is a modified PC al-
gorithm, is limited for partially learning target causal structures from auxiliary datasets that
have the same relevance and only contain observational data. Their proposed modifications to
the PC algorithm are focused on using heuristics for deciding whether auxiliary domain data
can be used in conditional independence tests. The learned causal models with this algorithm
showed slightly smaller error (for adding, deleting and reversing edges) than those obtained
with an algorithm that only concatenates data.

3.2 Learning Causal Probabilistic Graphical Models from Mul-
tiple Datasets

Learning of causal probabilistic graphical models from multiple datasets have been explored
in several works (Claassen & Heskes, 2010; Hauser & Bühlmann, 2012; Mooij et al., 2019;
Ramsey et al., 2010; Tillman & Spirtes, 2011; Triantafillou & Tsamardinos, 2015). The aim
of these algorithms is to learn the structure of population-wide causal models from the com-
bination of multiple datasets that were obtained under different conditions. In these works,
it is assumed that there exists a single underlying causal mechanism. Moreover, in the large
sample limit, their algorithms find the Markov equivalence class that contains the true causal
structure.

Algorithms for partially learning causal structures from multiples datasets with observa-
tional data were proposed in (Claassen & Heskes, 2010; Ramsey et al., 2010; Tillman & Spirtes,
2011). Ramsey et al. (2010) provide a modification of the GES algorithm, where a modified
Bayesian score combines the scores that were estimated in each dataset and then find the causal
structure. In the proposal of (Claassen & Heskes, 2010; Tillman & Spirtes, 2011), the causal
structure for each dataset is first searched, and from these, a summarized causal structure is
found. A special case, where there are datasets with observations for some subset of variables of
the systems, is studied by Claassen & Heskes (2010); Tillman & Spirtes (2011). They assume
that the datasets have variables in common, and at least one dataset measures every variable
of the system.

On another hand, Hauser & Bühlmann (2012); Mooij et al. (2019);
Triantafillou & Tsamardinos (2015) analyzed causal structure learning from a combina-
tion of experimental and observational datasets. Hauser & Bühlmann (2012); Mooij et al.
(2019), use context variable to indicate the intervened variables and from a single dataset,
including context and observable variables, learn the causal structure. Their proposals
assume causal sufficiency. In special, the algorithm of Hauser & Bühlmann (2012), that
is a modification of the GES algorithm, called Greedy Interventional Equivalence Search
(GIES), also requires knowing what variables were manipulated in the experiment. While
the framework proposed by Mooij et al. (2019) is designed to work with constrained-based
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algorithms and includes a strategy to construct a single dataset from multiples datasets with
different subsets of intervened variables. For its part, Triantafillou & Tsamardinos (2015)
provides a constrained-based algorithm that can find the causal structure from datasets
including samples for a subset of the variables, with common variables between them. A
causal structure from each dataset is estimated applying the FCI algorithm, and then a
summarized causal structure that fits with all datasets is found. For finding the summarized
causal structure, the set of independences and dependences entailed for each dataset, and a
strategy to manipulate conflicts are used.

The mentioned algorithms were designed to learn causal PGMs under the assumption that
there is a sufficient number of samples (Zuk et al., 2012). In case of limited dataset, these
algorithms can not learn acceptable causal PGMs.

3.3 Learning Subject-Specific Probabilistic Graphical Models

The issue of learning subject-specific probabilistic graphical models was considered by
Visweswaran & Cooper (2010), Cooper et al. (2018), Jabbari et al. (2018), and Li et al. (2018).
In (Visweswaran & Cooper, 2010) an algorithm to learn patient-specific associative Markov
Blanket models is proposed. In this algorithm, Markov Blanket models are estimated by ave-
raging a set of selected Bayesian networks. Using the knowledge of a subject-specific instance
and a single training dataset, a candidate set of BNs are learned. A score based on Kull-
back–Leibler (KL) divergence estimates the relevance of a candidate BN for finding the best
Markov Blanket model.

For its part, Cooper et al. (2018), Jabbari et al. (2018), and Li et al. (2018) consider the
learning of subject-specific causal models. The algorithm of Cooper et al. (2018) learns specific
causal models represented by bipartite causal graphs, from observational datasets, assuming
that there is only a cause for each effect.

Li et al. (2018) provides an algorithm to find the structure of a subject-specific causal model
from observable and interventional datasets. This algorithm assumes that the causal effects
vary across subjects while the direction of causal relations is homogeneous. For modeling
the subject-specific causal models, linear Gaussian functional equations with mixed effects are
used. The subjects-specific functional models are learned from observational and interventional
datasets of the same subject.

On the other hand, Jabbari et al. (2018) provided the first algorithm to learn the structure
of instance-specific causal Bayesian networks that is called instance-specific GES (IGES). They
propose an algorithm that is limited for learning partial causal PGMs from one observational
dataset and an instance that describes special characteristics of a specif subject. It is a context-
based algorithm in which it is considered that certain independences are holding in a specific
assignment of values for specific variables. Under this assumption, besides those of Causal
Markov condition, Faithfulness and Causal Sufficiency, a partial causal model that best adjust
with the characteristics of a specific-subject represented by an instance is found. First, the
algorithm performs a greedy equivalence search (GES) with a single observational dataset for
finding the population-wide causal Bayesian networks. Then, using the population-wide causal
model as a priori model and a subject-specific instance, the instance-specific partial causal
model (a Markov equivalence class) is found with a modified version of the GES algorithm. It
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is considered that the subject-specific instance is not included in the training dataset. Hence,
the algorithm, using the training set, searches the independencies that are consistent with the
context described by the subject-specific instance. With a high adjacency (0.7 ± 0.07), and a
low arrowhead (0.37± 0.13) average precision, the algorithm finds the specific causal relations
for a particular subject.

3.4 Discussion

Although there are several works that have explored knowledge transfer for learning Probabilis-
tic Graphical Models, the research for causal PGMs remains limited. Most studies have relied
on the learning of associative PGMs. To our knowledge, only the work of Jia et al. (2018) have
examined the transfer learning of causal PGMs. The transfer algorithm provided by Jia et al.
(2018) is limited to work with auxiliary observational datasets that have the same relevance
for learning a target causal PGM. Moreover, this algorithm assumes that the variations in the
datasets are due to sampling, ignoring variations due to differences in experimental conditions.

A similar situation occurs with works for learning subject-specific causal models. The
algorithm of Jabbari et al. (2018) is constrained to find the model that best adjusts with the
characteristics described by an instance of the target, using one observational dataset. The
possible differences of the target subject with members of the population are not contemplated
in the learning. Moreover, since this algorithm use observational data, it is limited to find
partial causal models.

On another hand, although there are numerous studies that have analyzed the learning
of causal models from multiple datasets, they are focused on the learning of population-wide
causal models. Besides, since these algorithms assume that there are enough data for learning
causal PGMs, they cannot be used for learning acceptable causal PGMs from limited datasets.
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Methodology

4.1 Working Plan

The following methodology is proposed to achieve the objectives of this research:

1. Assessment of current solutions for structure learning of causal PGMs.

In this step it will be studied the feasibility of extending causal structure discovery al-
gorithms with transfer learning techniques. In particular, the score-based algorithms
GES, GIES, GFCI, and IGES will be analyzed. Properties of score functions, causal
assumptions, and type of Markov equivalence class will first be identified. Then, a pre-
liminary knowledge transfer algorithm for learning the structure of subject-specific causal
PGMs from two auxiliary observational datasets and a one auxiliary causal PGM will be
designed.

2. Design and development of instance-based transfer algorithm for learning
Markov equivalence classes.

In this stage, a score-based algorithm for learning MECs, transferring instances from
auxiliar observational datasets will be developed. The aim is to develop an algorithm
for finding a preliminary causal structure encoding the possible causal relations for a
subject-specific causal PGM.

a) Design a relevance function that measure the relation of the auxiliary domain with
the target domain, and how much the auxiliary dataset helps to learn a target
causal PGM. This function will be defined over the differences in local conditional
distributions.

b) Design a scoring function (Chickering, 2002) that measure how well the local structure
of target causal PGM fits with the combination of auxiliary and target datasets.

c) Design an algorithm to combine auxiliary domains considering the relevance of each
auxiliary datasets. In its design, two scenarios will be analyzed, transferring
weighted instances of the best relevant domains, and combining the causal models
learned independently from each auxiliary dataset.

22
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d) Validation. Its ability for recovering skeleton and v-structures of the ground truth
causal structures will be assessed. To do this evaluation, different causal PGMs
with known structure and parameters will be used as ground truth causal PGMs.
Next, from these ground truth causal PGMs, auxiliar causal PGMs will be genera-
ted. Target datasets and auxiliary datasets will be sampled from the ground truth
causal PGMs and auxiliar causal PGMs, respectively. Finally, the preliminary causal
subject-specific PGMs (MECs) obtained by the algorithm will be compared with the
ground truth causal PGMs. This evaluation process is illustrated in Figure 4.2.

i) Generation of synthetic datasets: Following the scheme proposed in Luis et al.
(2010), datasets for target and auxiliar domains will be generated. In this
scheme, the observational dataset for target subjects are sampled from the
ground truth causal PGMs, and the auxiliary datasets are sampled from auxiliar
causal PGMs. Adding and deleting edges of a ground truth causal PGM, the
auxiliar causal PGMs are generated.

ii) An experiment that contemplates different ground truth causal PGMs and differ-
ent modification schemes for generating auxiliar datasets will be designed and
performed. For evaluating the MECs obtained by the algorithm, normalized
structural Hamming distance (NSHD), and adjacency precision (Jabbari et al.,
2018; Triantafillou & Tsamardinos, 2015), will be used.

3. Design and development of model-based transfer learning algorithm.

In this stage, an algorithm that helps to identify the direction of the causal rela-
tions for preliminary subject-specific causal PGMs (MECs), will be developed and vali-
dated. The algorithm will be designed considering the theory and conditions defined in
(Bareinboim & Pearl, 2013).

a) Design heuristics to identify the possible relations of auxiliar causal PGMs that could
be transferred to a target causal PGM.

b) Design a function to estimate the local differences in the probability distributions of
target PGM and auxiliar PGM.

c) Design a function that determines if each possible causal relation of auxiliar causal
PGM could be transferred to a target PGM. In its design, local differences in pro-
bability distribution and the target and auxiliary structures will be considered.

d) Validation of the algorithm. The performance of the model transfer algorithm will be
evaluated in its ability for identifying the direction of causal relations of ground truth
causal structures. The algorithm will be evaluated following a similar evaluation
process to that of stage 2. In this case, for each ground truth causal PGM, a target
dataset will be sampled, and auxiliar causal PGMs will be generated. After that, a
MEC will be estimated (using the algorithm of stage 2), that then, together with
the auxiliar causal PGMs, will be used for finding a target subject-specific causal
PGM. Finally, estimated causal PGMs will be compared with the ground truth
causal PGMs.

i) Generation of synthetic auxiliar causal PGMs: Adding and deleting edges of the
ground truth causal PGMs, the auxiliar causal PGMs will be generated.
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ii) An experiment that contemplates different ground truth causal PGMs and diffe-
rent modification schemes for generating auxiliar causal PGMs will be designed
and performed. The normalized structural Hamming distance (NSHD), and
orientation precision (Jabbari et al., 2018; Triantafillou & Tsamardinos, 2015),
will be used as metrics to evaluate the causal PGMs obtained by the algorithm.

4. Extension of instance-based transfer algorithm for learning from auxiliary
mixed datasets.

In this stage, the algorithm developed in stage 2 will be extended for learning the structure
of subject-specific causal PGMs, transferring knowledge from auxiliary mixed datasets
with observational and experimental samples.

a) The function designed in step 2 will be extended to consider auxiliary datasets with
observational and interventional samples.

b) The functions proposed in the literature for mixed datasets (Brenner & Sontag, 2013;
Cooper & Yoo, 1999; Hauser & Bühlmann, 2012), will be analyzed to select one that
could be modified, such as that describe the adjust of candidate causal structure with
a combination of target and auxiliary datasets.

c) Define heuristics to combine the causal PGMs learned independently from each auxi-
liary dataset. In these heuristics should be considered the relevance of each auxiliary
dataset and the differences in the set of intervened variables.

d) Validation: The performance of the algorithm will be evaluated in its ability for
identifying the direction of causal relations of the ground truth causal structures.
The algorithm will be evaluated following a similar evaluation process to that of
stage 2. In this case, for each ground truth causal PGM, a target dataset will be
sampled, and auxiliar causal PGMs will be generated. Next, auxiliar datasets will
be sampled after performing manipulation on auxiliar causal PGMs. Target dataset
and auxiliary datasets will be used to find a target subject-specific causal PGM.
Finally, this estimated causal PGM will be compared with the ground truth causal
PGMs.

i) Generation of synthetic datasets with observational and experimental samples.
Considering the theory of perfect interventions proposed by Pearl (2000), the
scheme of (Luis et al., 2010) will be extended to generate synthetic datasets
with observational and experimental samples for the auxiliary domains. This
scheme should contemplate variations in the number of intervened variables.

ii) An experiment that considers variations on the number of intervened variables
in auxiliary domains will be designed and performed to evaluate the algorithm.
The same metrics used in stage 3 will be used to evaluate the causal structures
obtained by the algorithm. It is planned to compare the obtained performance
with that obtained by the algorithm of stage 3.

5. Design and development of a hybrid knowledge transfer algorithm.

In this stage, a hybrid algorithm for learning the structure of subject-specific causal
PGMs, combining the transfer of instances of auxiliar datasets and causal relations of
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Stage Task Specific
Objective

RQ

1 Assessment of current solutions for structure
learning of causal PGMs

1,2,3 1

2 Design and development of instance-based transfer
algorithm for learning Markov equivalence classes

1 1

3 Design and development of model-based transfer
learning algorithm

2 2

4 Extension of instance-based transfer algorithm for
learning from auxiliary mixed datasets

3 3

5 Design and development of a hybrid knowledge
transfer algorithm

4 4

6 Exemplification of the knowledge transfer learning
algorithm

5 4

Table 4.1: Relation between stages in the methodology, objectives (Section 1.6) and research
questions (Section 1.4).

auxiliary PGMs, will be developed. The algorithms of stages 2, 3, and 4, will be integrated
for developing this algorithm.

The performance of the hybrid transfer algorithm will be evaluated in its ability for
identifying the direction of causal relations of the ground truth causal structures. An
experiment that contemplates the process described in stages 3 and 4, for generating
auxiliary datasets and causal PGMs, will be designed and performed. The same metrics
used in stage 4 will be used to evaluate the causal structures obtained by the algorithm.

6. Exemplification of the knowledge transfer learning algorithm.

In this stage, the hybrid transfer knowledge algorithm will be applied to a causal analysis
problem of the neuroscience domain. An experiment will be designed and performed for
collecting the data. In its design, a task that involves a well-known neural circuit will
be chosen, so that the causal model obtained by the algorithm can be validated with the
causal relations reported in the literature.

Important elements for this methodology are described in figures 4.1 and 4.2. In Figure 4.1,
the relation between the main stages of this methodology is described. The general scheme
that will be used to validate the algorithms is presented in Figure 4.2.

The relation between stages in the methodology, objectives and research questions is pre-
sented in Table 4.1.

4.2 Schedule

In Figure 4.3 is presented the schedule of activities for the realization of this research.
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Figure 4.1: Main stages of the methodology: In stage 2, an instance-based transfer algorithm
for learning MECs (preliminary subject-specific causal PGMs) will be developed. These prelim-
inary subject-specific causal PGMs will be improved with the model-based transfer algorithm
of stage 3. Then, in stage 4, the algorithm designed in stage 2 will be extended for transferring
instances from observational and interventional auxiliary datasets. Finally, the algorithms de-
veloped in stages 2, 3, and 4, will be integrated into the hybrid knowledge transfer algorithm
for learning subject-specific causal PGMs.

4.3 Publications Plan

1. Instance-based transfer for learning Markov equivalence classes. Conference, The 33rd
International Conference of the Florida Artificial Intelligence Research Society,deadline:
November 18, 2019; conference: May 2020.

2. Model-based transfer for learning subject-specific causal PGMs. Conference, Probabilistic
Graphical Models 2020, deadline: May 2020; conference: September 2020.

3. Instance-based transfer for learning subject-specific causal PGMs. Conference, Confer-
ence on Uncertainty in Artificial Intelligence, deadline: March 2021; conference: July
2021.

4. Knowledge transfer for learning subject-specific causal PGMs. Journal, International
Journal of Approximate Reasoning, June 2021.
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Figure 4.2: Performance evaluation testing for the knowledge transfer learning algorithms
of stages 2, 3, 4, and 5. a) Ground truth causal PGMs will be causal PGMs with known
structure and parameters. b) From these ground truth causal PGMs will be sampled the target
datasets, and the auxiliary domains and tasks will be generated. Each auxiliar task will be
composed by a causal PGM, which is a modification of the ground truth causal PGM, and
each auxiliary domain, by a dataset sampled from auxiliary tasks. c) The knowledge transfer
algorithm for learning subject-specific causal PGMs and d) the subject-specific causal PGMs
will be estimated from each target dataset and auxiliary sources. Finally, e) the performance of
the algorithm will be obtained from the average of the individual evaluations for each estimated
causal structure (exemplified with the normalized structural Hamming distance).
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Figure 4.3: Schedule of activities for the PhD research.



Chapter 5

Preliminary Results

In this Chapter, preliminary results for this research are presented. These preliminary results
are organized in two parts. In the first part, the preliminary results related to the development
of an instance-based transfer algorithm for learning Markov equivalence classes are presented.
The preliminary results obtained for an experiment of brain functional connectivity analysis
are presented in the second part.

These preliminary results are part of the specific objectives first, and five that are related
to steps one, two, fourth, and six of the methodology.

5.1 Knowledge transfer-GES

The proposed preliminary algorithm is an extention of the Greedy Equivalence Search (GES)
algorithm that from two auxiliary observational datasets, finds the Markov equivalence class
(MEC) corresponding to a target subject-specific causal PGM. Under the assumptions of causal
sufficiency and faithfulness conditions, the best MEC is found by maximizing a score function
that combines the knowledge of target and source domains.

For combining the knowledge of target and source domains, local knowledge transfer of
the best source domain is explored. In this local knowledge transfer, the instances of the best
source domains are transferred for finding the parents set Pa(Xi) of each node Xi in a MEC
G. The best source domain among the available pool is determined using a fitness function
that measures the relatedness of the source domain with the target domain. The proposed
local knowledge transfer is applied to each iteration of the GES when a candidate structure is
evaluated with the score function, in such form as described in Algorithm 2.

Two new forms of the local knowledge transfer are proposed here: knowledge transfer of the
weighted-instances and knowledge transfer of re-sampling instances. These forms of extending
the GES algorithm are described in the following sections.

5.1.1 Knowledge transfer of weighted-instances

This extension of GES, denominated as TKL-WeGES, uses the local transfer of weighted in-
stances of auxiliary domains for estimating the score of a candidate MEC in the target domain.

29
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Algorithm 2: scoreTKL algorithm

Function scoreTKL()

Input: X
DT : The observable datasets for target domain
DS1, DS2: The observable datasets for source domains
G′: the candidate structure for target
S1,S2: the structures for source domains
Output: s: the score for G′
s← 1
foreach X ∈ V do

s← s ∗ localScoreTKL(X,PaT (X),PaS1(X),PaS2(X), DT , DS)
end
return s

Function localScoreTKL()

Input: X
PaT (X): parents of X in G′
PaS1(X): parents of X in GS1
PaS2(X): parents of X in GS2
Output: s score for G′
lfS1 ← localF itness(X,DT , DS1,PaT (X),PaS1(X))
lfS2 ← localF itness(X,DT , DS2,PaT (X),PaS2(X))
if (lfS2 < lfS1) then

s← localScore(X,DT , DS1,PaT (X), lfS1)
end
else

s← localScore(X,DT , DS2,PaT (X), lfS2)
end
return s
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The local BDeU score defined in the Equation 2.4 is used for evaluating the adjust of the
combination of source DS and target DT datasets with a local structure composed by Xi ∈ (X)
with their parents PaT (Xi), as follows:

localScoreWe(Xi,PaT (Xi), DT , DS) =

qi∏
j=1

Γ(αij)

Γ(αij +NCij)

ri∏
k=1

Γ(αijk +NCijk)

Γ(αijk)
(5.1)

In this local score, NCijk = (Nijk)T + Wi(Nijk)S considers the combinations of the target
instances with the weighted instances of source domains. (Nijk)T represents the number of
cases in DT in which Xi = k and its parents paT (Xi) = j, and (Nijk)S , the number of cases
in DS in which Xi = k and its parents paT (Xi) = j. Besides Wi, encode the differences in the
conditional probability distribution of Xi between the target PT (Xi|PaT (Xi)) and the source
domain PS(Xi|PaS(Xi)).

For estimating Wi, the Kullback-Leibler divergence is used as follows:

Wi = 2−|DKLD(PT (xi|paT (Xi)),PS(xi|paS(Xi)))| (5.2)

With this function, when the difference between target and auxiliary datasets increases, it is
penalized with weights nearly to zero; and it assigns weights nearly to one, to small differences
lower to one.

Considering that Wi encodes the difference between the target and the source domains, it
is also used to measure their relatedness as follows,

localF itness(Xi, DT , DS) = Wi (5.3)

5.1.2 Knowledge transfer of re-sampling instances

This is an extension of GES that uses the transfer of re-sampling instances of the target domain
(denominated as TKL-ReSGES). We assume that new instances for the target domain are
generated for estimating the score of each candidate MEC. These new instances for the target
domain are sampling from the Dirichlet-Multinomial distribution with a priori parameters
(α+ (N)S), where (N)S is the counts of the source domain. The new instances for the target
domain have a Dirichlet-Multinomial distribution with parameters (α+ (N)S + (N)T ).

This Dirichlet-Multinomial distribution with parameters (α+(N)S +(N)T ) is used to esti-
mate the probability that a candidate MEC for a target domain, adjusts with the combination
of instances for source and target domains, that is, P (G|DT , Ds) = DIR(α+ (N)S + (N)T ).

Considering that, the local score function is defined as follow (Zhou et al., 2016):

localScoreRe(Xi,PaT (Xi), DT , DS) =

qi∏
j=1

Γ((ANij)S)

Γ((ANij)S + (Nij)T )

ri∏
k=1

Γ((ANijk)S + (Nijk)T )

Γ((ANijk)S)

(5.4)
where,

n is the number of nodes in G,
qi is the number of instantiations of Pa(Xi),
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ri is the number of values of Xi,

(ANijk)S = αijk + (Nijk)S is agregated counts from the prior distribution α and source
domains,

(ANij)S =
∑

k(ANijk)S ,

(Nijk)T is the number of cases in DT in which Xi = k and its parents paT (Xi) = j,

(Nij)T =
∑

k(Nijk)T ,

αijk = α
riqi

is a Dirichlet prior parameter.
In this local score, the instances of the best source domain are used. For measuring the

relatedness of the source domain with the target domain, is used the local score of equation
2.4 as follows,

localF itness(Xi,PaS(Xi), DT ) = localScore(Xi,Pa(Xi), DT ) (5.5)

5.1.3 Experiments

5.1.3.1 Generation of synthetic datasets

Synthetic datasets are generated from ground truth Bayesian networks which are BN with
known structure and parameters. Target datasets and source datasets are generated in the
following form. Target dataset is sampled from the ground truth BN, and source datasets,
from related BNs. Related BNs are generated from the ground truth BN, adding pMod percent
of edges, followed by deleting pMod percent of edges. Next, their parameters are estimated
using a dataset sampled from the ground truth BN. Each dataset is sampled from their co-
rresponding BN using forward sampling in which the values of each variable Xi are sampled in
ancestral order (parents before their children), in such form that its values xi are drawn from
P (xi|pa(Xi)). This process was implemented in R using the bnlearn package (Scutari, 2009).

5.1.3.2 Experimental design

In this experiment, we hypothesized that the TKL-WeGES and TKL-ReSGES algorithms would
outperform the GES algorithm. The performance of the TKL-WeGES and TKL-ReSGES al-
gorithms was evaluated in their ability for finding skeletons of the ground truth models. In
this evaluation, the Coma (Cooper, 1984) and Asia (Lauritzen & Spiegelhalter, 1988) binary
BNs with five and eight nodes, respectively, were used as ground truth models. These BNs
are shown in Figure 5.1. From each BN, two related BNs, modifying the edges of the origi-
nal BN in 10% and 40%, were created. Considering extreme cases of relatedness (most and
less related) were selected these parameters. Datasets with 1600 and 12800 samples for Coma
and Asia were used for estimating their respective parameters. Taking into account that after
modifying the ground truth BNs would increase the number of parents for some nodes. The
sample size was estimated using samplesize = 100(2k), considering that a node in a related
BN may have at most k = n − 1 parents (where n is the number of nodes in the BN). In the
experiments, for each source dataset, 1600 samples for Coma and 12800 samples for Asia (using
the same formule that for the parameters estimation), were obtained. Ten datasets varying
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(a)

(b)

Figure 5.1: Ground truth Bayesian networks for the experiments: a) Coma and b) Asia.

the sample size were obtained for the target domain. For Coma, the set of target datasets
includes datasets with size {50, 100, 150, 200, 250, 300, 350, 400, 450, 500}, and for Asia, with
{80, 160, 240, 320, 400, 480, 560, 640, 720, 800}. Ten runs of this scenary were used to evaluated
the algorithms. The models obtained by the algorithms were evaluated using normalized struc-
tural Hamming distance (NSHD), adjacency precision (TPR), and adjacency recall (TDR).
Normalized structural Hamming distance is the minimum number of edge insertions, deletions,
and changes needed to transform a model into another (Montero-Hernandez et al., 2018). Ad-
jacency precision is the ratio TP/(TP + FP ), and the ratio TP/(TP + FN) is the adjacency
recall. Where TP is the number of adjacencies that are in common in the estimated model and
ground truth model without considering the edge orientation; FP is the number of adjacencies
that are present in the estimated model but not in the ground truth model; and FN is the
number of adjacencies that are present in the ground truth model but not in the estimated
model (Jabbari et al., 2018).

5.1.4 Results

The experimental results are summarized in Tables 5.1 and 5.2 for Coma and Asia, respectively.
For the TKL-WeGES, the results for transferring instances from the most related domain,
and both domains are presented. The results show that TKL-WeGES and TKL-ReSGES
improve the models retrieved with respect to GES. In the case of Coma, considering the results
for NSHD (the best NSHD is obtained when it is zero), both algorithms seem to decrease
the differences between the true and the estimated model. The results for this model also
show that, although the performance of the correct edges rate (TPR) seems to decrease, both
algorithms are discovering more number of edges, increasing the adjacency discovery of the
true model. The results for Asia show an improvement in the TPR and TDR rates. They also
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Method TPR TDR NSHD

GES 0.91(0.13) 0.56(0.25) 0.54(0.25)

TKL-WeGES 0.83(0.08) 0.94(0.10) 0.46(0.32)
(most related domain)

TKL-WeGES 0.83(0.08) 0.94(0.10) 0.54(0.35)
(both domains)

TKL-ReSGES 0.80(0.12) 0.72(0.21) 0.56(0.39)

Table 5.1: Averages of adjacency precision (TPR), adjacency recall (TDR), and normalized
structural Hamming distance (NSHD) for Coma. The numbers in parenthesis are standard
deviations.

Method TPR TDR NSHD

GES 0.71(0.28) 0.58(0.31) 0.98(0.44)

TKL-WeGES 0.96(0.07) 0.95(0.06) 2.03(0.33)
(most related domain)

TKL-WeGES 0.89(0.19) 0.90(0.23) 1.89(0.35)
(both domains)

TKL-ReSGES 0.88(0.13) 0.69(0.23) 1.29(0.30)

Table 5.2: Averages of adjacency precision (TPR), adjacency recall (TDR), and normalized
structural Hamming distance (NSHD) for Asia. The numbers in parenthesis are standard
deviations.

show that the differences between the true and the estimated model increase, which indicate
that the estimated model has more edges than the true model (spurious edges).

From the results of both models, it can be observed that both algorithms improve the
adjacency discovery rate of the true model (TDR), being better with TKL-WeGES and superior
with TKL-ReSGES. Although they also indicate that both algorithms are discovering spurious
edges, which seem to increase when the number of nodes increases. It can also be observed
that performance for TKL-WeGES is better when the knowledge is transferred from the best
domain, than when it is transferred from both domains.

The knowledge transfer of weighted-instances appears to be the most appropriate to be
included in a score-based algorithm for discovery MECs. Although, considering the results in
NSHD, it is necessary to improve the stage of removing edges of the algorithm.

5.1.5 Conclusions

The advances in the development of a preliminary instance-based transfer algorithm for learning
Markov equivalence classes were presented. The advances show the results obtained by ana-
lyzing two types of local instances transfer: knowledge transfer of the weighted-instances and
knowledge transfer of re-sampling instances. Experimental results indicate that it is feasible
to extent a score-based algorithm with the local knowledge transfer of the weighted-instances.

As part of the continuation of this study, we propose to integrate a strategy based on
constraints to eliminate the number of incorrect edges. We also consider extending the local
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Figure 5.2: Motor execution network: left primary motor area (LM1), right primary motor area
(RM1), left pre-motor cortex (LPMC), right pre-motor cortex (RPMC), and supplementary
motor area (SMA).

knowledge transfer of the weighted-instances for more than two domains and integrating the
Meek orientation rules for deciding some possible orientations of the edges in a MEC (Meek,
2003).

5.2 Functional Connectivity Analysis for Neurorehabilitation
Stroke Patients

Functional connectivity refers to the study of the presence of statistical dependencies between
specific physiological signals of the brain (Ide et al., 2014). This brain connectivity could
be modeled with probabilistic graphical models using data of functional magnetic resonance
imaging (fMRI).

Preliminary results for an experiment related to the functional connectivity analysis for
patients who followed a Neurorehabilitation therapy are presented. In this experiment, proba-
bilistic graphical models (PGMs) were used for modeling the functional connectivity of stroke
patients. In particular, five regions of the motor execution network were considered to the anal-
ysis: left primary motor area (LM1), right primary motor area (RM1), left pre-motor cortex
(LPMC), right pre-motor cortex (RPMC), and supplementary motor area (SMA). The relation
between these regions is described in Figure 5.2 (Bajaj et al., 2015).

5.2.1 Experiment

5.2.1.1 Dataset

A dataset that includes 32 functional magnetic resonance imaging (fMRI) was used in the
experiment. This dataset was obtained from eight stroke patients who followed sessions of
a virtual reality-based Gesture Therapy. The fMRIs were collected at 4-time points of the
therapy: the fMRI scans of the first and the last time point (fMRI-1 and fMRI-4) were taken
before to start the therapy and after the end of the planned therapy, respectively. The fMRI
for intermediate points (fMRI-2 and fMRI-3) correspond to intermediate therapy sessions (7th
and 14th, respectively) (Orihuela-Espina et al., 2013; Orihuela-Espina & Sucar, 2011).

The fMRI images were preprocessed with the Statistical Parametric Mapping (SPM) soft-
ware (Friston, 2019). All fMRIs were first realigned to correct motion problems. Then, anato-
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mical and functional MRIs were co-registered and spatially normalized to the standard template
of the Montreal Neurological Institute (MNI). Finally, they were smoothed using a Gaussian
filter of 8mm in width.

After the preprocessing, five regions of the motor execution network were considered to
the analysis of brain connectivity: left primary motor area (LM1), right primary motor area
(RM1), left pre-motor cortex (LPMC), right pre-motor cortex (RPMC), and supplementary
motor area (SMA). The information of each region was obtained using the SPM software, as
spheres with 6mm in radius centered at the peak of its corresponding MNI coordinates. The
MNI coordinates of each region were defined according to the studies of Bajaj et al. (2015);
Chen et al. (2018). The high pass filtered time-series data of each region were obtained. After
that, the data of each region was normalized in the interval [0,1], and discretized in two values.
Following this process, the discretized data of all regions for the four fMRIs of each patient
were obtained.

5.2.1.2 Experimental design

For this experiment, we hypothesized that there are variations in the probabilistic relations for
the motor execution network across the patients and the four sessions of the Neurorehabilitation
therapy. The datasets available for seven patients were used in this experiment. Incomplete
datasets for the patient six was discarded. GES algorithm was used to find the PGMs encoding
the probabilistic relations between the brain regions.

The PGM for each patient and each session was constructed, yielding in a total of 28 models.
This scenery was run seven times, leaving out in each run, the datasets for a patient. The most
frequent relation for all runs was used to integrated the final PGM.

The difference between models was evaluated using False positive rate (TFR). It is defined
as the adjacencies of the one model that not are present in the other model (TF), overall
adjacencies of the one model (TP+TF). The averages of the TFR over all comparations between
pairs of models, corresponding to the same session, was finally used to evaluate the differences
in connectivity between patients. A similar process, using all comparison between the same
patient overall sessions, was used to estimate the differences between sessions.

5.2.2 Results

The probabilistic graphical models obtained for six patients are presented in Figures 5.3 and
5.4. These figures show the models obtained by GES for each patient and each session. The
PGMs without functional connections for the patient four are not presented.

From these results, we can observe that there are variations in the functional connectiv-
ity across patients and sessions, with average (standard deviation) in TFR of 0.24(0.06) and
0.36(0.12) , respectively. The patients with high functional connectivity are those correspond-
ing to patients five and seven, and with low connectivity, patients one, two and six. It can
be observed, that the connectivity seems to be more variable across the sessions. For some
patients, the connectivity decrease across sessions, and in others the connectivity seems to
increase, and decrease in the last session. Moreover, for almost all patients, some relation
between regions changes across the sessions.
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Comparing the models with the motor execution network described in Figure 5.2, the models
that seem to be more consistent (with more coincidences) are those corresponding to patients
three and seven. It also can be seen that some connections coincide, LMI-SMA, LPMC-SMA,
RPMC-SMA, being the most frequents, and RMI-SMA the less frequent.

The results for this experiment show that there are variations between the functional con-
nectivity across the patients and the sessions. It remains to complement the results with other
studies that help in their interpretation and validation.

5.2.3 Conclusions

The preliminary results obtained by an experiment of functional connectivity for the motor
execution network of patients who followed neurorehabilitation therapy were presented. Pre-
liminary results show that there are variations in the functional connectivity for the motor
execution network, across subjects and sessions.

As part of the continuation of this study, we intend to apply the algorithms to be developed
in this research, for improving the results, and also for identifying which of the functional
connections are part of causal relations.
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(a)

(b)

(c)

Figure 5.3: Functional conectivity models for patients (a) one, (b) two, and (c) three corre-
sponding to the sessions one to four.
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(a)

(b)

(c)

Figure 5.4: Functional conectivity models for patients (a) five, (b) six, and (c) seven, corre-
sponding to the sessions one to four.
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