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Abstract

In recent times, processing of streams of data is gaining the attention of the scientific community due to its

practical applications, i.e. network traffic analysis and surveillance, sensor networks control, financial transactions

mining among others. Data stream is an unbounded and infinite flow of data arriving at high rates and,

therefore, the classical approaches can not be used straightforward in this scenario. Frequent itemsets mining is

a Data Mining technique that guarantees to obtain hidden patterns in data, and it have been used to extract

useful knowledge from various data sources including data streams. Commercial solutions can not process in

an exhaustive manner the produced data streams because of the high incoming rates and the huge number of

transactions transmitted. In the most of cases, commercial solutions can not process exhaustively data stream at

all. Because of this, finding alternatives to achieve better results in the discovering of frequent itemsets on data

streams is an active research topic. One of such alternatives is to develop single-pass parallels algorithms that can

be implemented in hardware to take advantage of the inner parallelism of such devices. The main contribution

of this research is the design and develop of a new single-pass algorithm that can mine high incoming rates

data streams. As preliminary results, the proposed methods can mine in exhaustive fashion the incoming data

streams when the number of single items is low. When the number of single items in transactions is high, the

proposed method obtains an approximate solution with no false positives itemset produced.

Keywords: Data mining, frequent items and itemsets mining, reconfigurable hardware, custom hardware

architectures.
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1. Introduction.

In recent years, there has been an explosion on the amount of data generated by all sort of human activities.

In order for this data to be useful, it must be processed to obtain hidden knowledge. To perform this task,

several approaches have been proposed and implemented mainly in software-based systems that offer limited

performance when processing large amounts of data. Data generating rate is growing exponentially while Data

Mining application performance has only increased by 10-15% [1]. In 2012, about 2.5 exabytes of data were

created each day on the whole world, and that number is doubling every 40 months or so. For instance, Walmart

supermarkets collects more than 2.5 petabytes (approximate) of data every hour from its customer transactions.

Being able to mine such data set, will be useful to obtain invaluable new knowledge of buying patterns of

customers. Modern-day algorithms cannot deal with such volumes of data, and it is evident that are needed to

research and to propose new data acquisition paradigms [2].

Data Mining aims to pride the tools and techniques needed to face such immense data1 volumes. In Data

Mining scenario is extremely useful to record all the occurrences of certain patterns and that is what frequent

items and itemsets mining performs. Frequent items are those data patterns that can be found more than a

given number of occurrences in data, while frequent itemsets are those sets of data items that can be found

always together more than a given number of occurrences in data. In other words, the goal of frequent items

and itemsets mining is to determine which elements in a database (or any other data source) commonly appear

together. The basic sketch in frequent itemsets mining is shown:

1. Get the basic patterns.

2. Count the number of occurrences of those basic patterns in data.

3. Remove those patterns that do not exceed a certain value (number of occurrence).

4. Perform all combination of length n (n = 2,3....) with the basic patterns obtaining n-frequents patterns.

5. Go to step 2 and repeat forthcoming steps until there is no possible combination or no combination exceeds

the number of occurrences.

This sketch was enhanced by Agrawal [3] and then he proposed an algorithm named Apriori. Apriori was

the first approach proposed for frequent itemsets mining and also, it is the simplest. Notice that it is in the first

step where the frequent items mining is performed. The third step is also known as Candidate Prune, and the

fourth step is known as Candidate Generation (See [3] for further references).

1Immense data volumes are referred to any data source that is in order of gigabytes of storage capacity or more.
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Frequent items mining is an essential part of frequent itemsets mining and the second one fully include the

first one. Due to the process to find frequent items is part of others Data Mining task (such as frequent itemsets

mining, frequent sequence mining or association rules mining) it must be done efficiently. The algorithms that

have been created for frequent items and itemsets mining tasks require large amounts of computational resources

to solve the combinatorial explosion of itemsets that can be found in a dataset2. This is mainly due to the

presence of thousands of different patterns or the use of a too low threshold of support (The support threshold

is the minimum number of occurrences of an item or itemset to be considered as “frequent”. See section 2 for

further information).

To accelerate frequent items and itemsets mining process, some parallel algorithms have been proposed. Some

of those algorithms use hardware devices (such as FPGAs and GPUs) to take advantage of the inner parallel

hardware resources [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 1, 14, 15, 16].

1.1. Proposal organization.

This proposal is organized as follows: the theoretical basis is presented in section two. Section three present

the review of state-of-the-art of the frequent itemsets mining on both data streams and databases. Methodological

foundations of this PhD Proposal are presented in section fourthwhile in section fifththe preliminary results are

presented.

2. Theoretical basis.

In this section the main concepts and theoretical basis that will be used further in this PhD proposal are

introduced.

2.1. The frequent itemsets problem.

Frequent itemsets mining was introduced by Agrawal et al. back in the early 90’s[3], and it is used for finding

common and potentially interesting patterns in databases. In this scope, data are represented by means of

transactions, each of which is a set of items labeled by a unique ID. The purpose of frequent itemsets mining is

to find the most frequently-occurring subsets from these transactions. The frequency of the subset is measured

by support ratio, which is the number of transactions containing the subset divided by the total number of

transactions in the database. Frequent itemsets are typically used to generate association rules and is also useful

in sensor network mining[17], database management systems, information retrieval, bioinformatics, data streams

analysis, and computer vision [18], among others.

Formalizing, let I = {i1, i2, .., in} be a set of items :

2dataset is referred to database, unstructured file, data stream or any other data source.
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Table 1: An example transaction database D.

tid X

100 {beer, chips, wine}

200 {beer, chips}

300 {pizza, wine}

400 {chips, pizza}

Definition 1 (Itemset). A itemset X is a set of items over I such X = {ii, ..., ik} ⊆ I. If a set X contains k

items, then the set X is called k-itemset. Normally is considered that the items in an itemset are lexicographically

ordered.

Definition 2 (Transaction). A transaction T over I is a couple T = (tid, I) where tid is the transaction

identifier, and I is a X ⊆ I itemset. A transaction T = (tid, I) is said to support an itemset X ⊆ I, if X ⊆ I.

Definition 3 (Transaction Database). A transaction database D over I is a set of transactions over I such

that each transaction has a unique identifier (duplicated transactions are not allowed).

Definition 4 (Support). The support of an itemset X in D is the number of transactions in D that contains

X:

Support(X,D) = |{tid|(tid, I) ∈ D,X ⊆ I}| (1)

Support can be expressed in terms of the number of occurrences of an itemset (1, 2, 3...) or in term of percent

of the total of transactions(1%, 2%, 3%...).

Definition 5 (Frequency). The frequency of an itemset X in D is the probability of X occurring in a trans-

action T ⊆ D:

Frequency(X,D) = P (X) =
Support(X,D)

|D|
(2)

Note that |D| = support({}, D). An itemset is called frequent if its support is no less than a given absolute

minimal support threshold φabs, with 0 < φabs ≤ |D|. The frequent itemsets discovered does not reflect the

impact of any other factor except frequency of the presence or absence of an item.

Consider the example database shown in table 1 over the set of items I={beer, chips, pizza, wine}. Table 2

shows all frequent itemsets in D with respect to a minimal support threshold of 1.

It is important to notice two characteristics of itemsets to be considered:
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Table 2: Itemsets and their support in D.

itemset Cover Support Frequency

{} {100, 200, 300, 400} 4 100%

{beer} {100, 200} 2 50%

{chips} {100, 200, 400} 3 75%

{pizza} {300, 400} 2 50%

{wine} {100, 300} 2 50%

{beer, chips} {100, 200} 2 50%

{beer, wine} {100} 1 25%

{chips, pizza} {400} 1 25%

{chips, wine} {100} 1 25%

{pizza, wine} {400} 1 25%

{beer, chips, wine} {100} 1 25%

• In an itemset, items cannot be repeated; that mean if an item is found more than once it will be considered

as a single item (due to the Set concept).

• The order of items in itemsets is not important. If the order does matter, then we can say that we are in

the presence of a sequence[19].

These characteristics facilitate the designing process of new frequent itemsets mining algorithms.

2.2. Data streams.

Now a days the world is becoming more and more interconnected and recent advances in hardware and

software technology support this interconnection. Computing is heterogeneous and distributed and generates

continuous streams of digital data. Data streams can be found in financial analysis, data centers and system

health management, law enforcement, radio astronomy and physical sciences, telecommunications, health and life

sciences, manufacturing process control, smarter traffic management and energy and utility management, among

others[20]. Digital data that are transmitted in those streams are produced by diverse sources of information so

the data itself may consist of various formats and structures. To handle appropriately such data, system must

deal with high performance requirements of latency, error resilience or scaling.

There are a lot of definitions of Data Streams. Accordingly to [18] and [20] a Data Streams can be defined

as:
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Figure 1: Visual representation of 6 data streams through the time.

Figure 2: Computation model for data streams mining.

Definition 6 (Data streams). A data stream is a continuous, unbounded and not necessarily ordered (the

order can be established implicitly by arrival time or explicitly by timestamp) real-time sequence of data items.

Based on definition 6, and according with [18] we can verify on data streams the following characteristics:

1. Continuity: Items in stream arrive continuously at a high rate.

2. Expiration: Items can be accessed and processed just once by the processing units in a data streams.

3. Infinity: The only assumption that we can make about bounds of streams is that the total number of

data is unbounded and potentially infinite.

So, it is such a challenge to extend the Data Mining techniques, specifically frequent items and itemsets

mining, to data streams scenario.

Fig. 1 shows the visual representation of 6 different data streams through time. The figure represents, for

example, different products bought by six costumers in a supermarket, or bits that appear together in network

broadcasting. It can be seen that in a data streams scenario is extremely difficult to know which item is next.

Also is a challenge to process the items in some way due to the limited time to access them and the impossibility

to store them for later processing. Fig. 2 shows the generalities of a data streams management system.

In the remainder, we assume without loss of generality that the items in an itemset are lexicographically

ordered. Definition 2 can be used in streams scenario and here new concepts emerge:

Definition 7 (Transaction data stream). A transaction data stream is a sequence of incoming transactions

in a data stream.
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Figure 3: In databases scenario, frequent itemsets are those sets who appear more than a specified number of times (named support

value) in tuples of database. e.g., itemset {beer, chips} appear in 2 of the 4 transactions, so, for a minimum support value of 2, it

can be regarded as frequent.

Figure 4: In data stream scenario, the frequent itemsets has meaning inside the Window concept and a window is equivalent to a

table in databases. e.g., itemset {beer, chips} appear in 2 of the 4 transactions considered in window 1, so, for a minimum support

value of 2, it can be regarded as frequent.

In databases scenario, frequent itemsets are those sets who appear more than a specified number of times in

tuples of database. Fig. 3 shows the database presented in table 1. For a support value of 2, frequent itemsets

are {beer, chips}, {wine}, {pizza}, {beer} and {chips}.

Fig. 4 represents, in a data stream fashion, the database showed in table 1 and in Fig. 3. In data stream

scenario, the frequent itemsets has meaning inside the Window concept and a window is equivalent to a table in

databases. For window 1 in Fig. 4, the frequent itemsets are {beer, chips}, {wine}, {pizza}, {beer} and {chips}

for a support value of 2.

Following, window concept is defined.

Definition 8 (Window). A window in a data stream is an excerpt of items that pertain to the stream.

Definition 9 (Count-based Window). A window W is a count-based when it is composed of a sequence of

batches, where each batch consists of an equal number of transactions.

Definition 10 (Time-based Window). A window W is a time-based if W consists of a sequence of fixed-

length time units, where a variable number of transactions may arrive within each time unit.

In data streams mining is crucial to determine which model is the best suited to perform the mining process.

There are three main models to use:
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Figure 5: Streams mining models.

Figure 6: Landmark Window Model for data streams mining.

• Landmark window model.

• Damped window model.

• Sliding window model.

The window models presented can be represented as it is shown in Fig. 5.

2.2.1. Landmark Window Model.

The Landmark Window Model employs some points (called landmark) to start recording where a transaction

begins and ends. The landmark usually refers to the time when the system starts. Moreover, the support count

of an itemset in this model is the number of transactions containing it between the landmark and the current

time. The Landmark Window Model is illustrated in Fig. 6. This window model cannot be aware of time, and

therefore, cannot distinguish between new and old data.

2.2.2. Damped Window Model.

To distinguish between the oldest and new transactions a variation of the Landmark Window Model was

proposed and named Damped Window Model. Damped Window Model assigns different weights to transactions

where the recent ones have weight near to 1, and older ones have weight near to 0. As time passes, the weight

of each transaction will be degraded. Fig. 7 shows this model.

The Landmark and the Damped Windows Model compute the support between the landmark and the current

time. There are some applications where the interest is focused on data recently arrived within a fixed time

9



Figure 7: Damped Window Model is a variation of Landmark Window Model for data streams mining, where the recent transactions

have more importance than the oldest ones.

Figure 8: The Sliding Window Model only consider the latest transactions within a window of size W .

period, and these models can not be used in such applications.

2.2.3. Sliding Window Model.

In this model, given a window of size W only the latest W transactions are utilized in the mining process. As

the new transactions arrives, the old ones in the sliding windows are excluded. The use of this model impose a

restriction: as some transactions will be excluded of the mining process, methods for finding expired transactions

and for discounting the support count of the itemsets involved are required. Fig. 8 shows this model. This model

is based on the assumption that the number of frequent patterns is not particularly large and, therefore, it is

possible to store the transactions in each sliding window in main memory.

Sliding window can be with overlapping or without overlapping. It is important to notice that the model to

use depends on the application and/or the nature of the data streams.

2.3. Issues in Frequent Itemsets Mining.

The theoretical basis of frequent itemsets mining that has been presented can be applied to both databases

and data streams scenarios. The major problem with frequent itemsets mining methods in general is the explosion
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of the number of results, so it is difficult to find the most attractive frequent itemsets. In both databases and

data streams scenarios, usually the following features exist:

1. Elevate number of transactions.

2. Huge data volumes (order of gigabytes).

3. Many “data” and not enough “information”.

4. Limited computing resources.

5. Unpractical processing times.

Specifically in database scenarios, data can be read anytime while algorithms are executing. If data are

modified, the algorithms can still access them as needed. The main issue in this scenario is concerned to the high

number of items to handle (and therefore, memory and time consumption). Let be n the number of single items

in a database, the number of candidates frequent itemsets is 2n, or the same, this problem has computational

complexity of O(2n). Handling this large amount of data is a challenging task, and strategies for efficient data

access and data memory maintaining are needed [21].

As it was explained before, data streams are becoming more common, and they are more frequently used

in many real life applications. Data streams (as it was previously stated in definition 6) can be defined as a

continuous, ordered and potentially infinite sequence of items that occur in real time and also share the same

limitations of frequent data streams on databases. New limitations are added to frequent itemsets mining problem

if we consider the three characteristics of data streams (continuity, expiration and infinity):

1. It is impossible to store the stream for later processing.

2. Items in a data stream must be read and processed just once.

3. Items must be processed in an extremely short time interval.

Also, data streams are heterogeneous in format, content, rates, information and noise levels. These char-

acteristics make the processing and analysis of data streams difficult. Data streams may also be composed by

unstructured data types (audio, video, text) that cannot be easily handled using traditional approaches. Data

streams involves an inherent temporal component; this is because the data evolves over time, and therefore, data

streams mining exhibits temporal locality. Additionally there are multiple challenges associated with handling

noisy, missing and uncertain or imperfect data present on data streams. These include techniques for data

cleaning (with the mathematical background and processing models that are necessary to adopt), missing data

handling algorithms and minimizing degradation of any derived result.

In other words, frequent itemsets mining on data streams can be seen as a particular case of frequent itemsets

mining on databases that include extra challenges. Therefore, a straightforward translation of existing Data

Mining algorithms may be inadequate for the stream mining processes. Frequent itemsets mining on data

streams is an open research problem (see section 3.1 for further information).
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Figure 9: FPGAs combine the advantages of ASICs and GPP. It aims to fill the gap between hardware and software, achieving

potentially much higher performance than software while maintaining a higher level of flexibility than hardware.

2.4. Platforms for algorithms implementation.

There are two main development platforms to implement algorithms: the first one are Application Specific

Integrated Circuits (ASICs)[22]. ASICs are employed to perform a well-defined task, and; therefore, they are

extremely fast and efficient. However, once ASICs have been built, they cannot be modified, being this sometimes

a disadvantage. The second platform for the algorithms implementation isthe General Purpose Processors (GPP),

where the software instructions are decomposed in a set of basic instructions that can be executed directly by

the processor. In this approach, changing the software instructions implies a change in the algorithms behavior.

GPPs provides high flexibility in algorithms execution, but the performance will be degraded. To execute certain

functions, the GPP, first must read the instruction from memory and then decode their meaning into native GPP

instructions to determine which actions must be done. The decoding process of the original instructions of an

algorithm and the memory accesses introduce a delay into the execution of programs.

Just in the middle of both development platforms, Field-programmable gate arrays (FPGA) are the modern-

day technology for building hardware prototypes. FPGAs combine the advantages of ASICs and GPP. FPGAs try

to fill the gap between hardware and software, increasing the performance concerning of GPPs and maintaining

a higher level of flexibility than hardware. Fig. 9 represents the position of FPGAs.

The implementation of algorithms in hardware can be divided into two branches:

• Reconfigurable Hardware Computing.

• GPU Computing.

1. Reconfigurable Hardware Computing is referred to the use of hardware devices in which the functionality

of the logic gates is customizable at runtime, and FPGAs are the main exponent of this approach. The

connections between the logic gates are also configurable. FPGAs appeared in 1984 as successors of the

Complex Programmable Logic Devices (CPLDs). The architecture of a FPGAs is based on a large number

of logic blocks which perform basic logic functions. Because of this, an FPGA can implement from a simple

logical gate, to a complex mathematical function. FPGAs can be reprogrammed; that is, the circuit can

be ”erased” and then, a new architecture that implements a brand new algorithm can be implemented.

This capability of the FPGAs allows the creation of fully customized architectures, reducing cost and

technological risks that are present in traditional circuits design. Fig. 10 shows a general diagram of a
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Figure 10: Visual representation of the architecture of FPGAs and GPP, and the data flowing for some algorithm execution in

software and hardware.

composition of a FPGA, and the comparison of how an algorithm is executed in hardware and software.

The algorithm in Fig. 10a performs a comparison between two values a and b. If a is greater than b some

processing is executed, and if b is equal or greater than a other processing is executed. Fig. 10b) shows the

data flowing inside the software version of the algorithm, and it is evident that is more complex in terms

of data access than executing in hardware. Fig. 10c) shows the parallel nature of FPGAs.

2. GPU Computing is based on the use of specialized processing platforms known as Graphics Processing Unit

(GPU), which typically were originally designed to accelerate computer graphics processing, thus enhancing

the performance of systems based on traditional GPPs. Recently, GPUs have gained the attention of

the scientific community since they have been used as hardware accelerators for various non-graphics

applications, such as scientific computation, matrices multiplications and distributed computing projects,

among others. For additional information on the state-of-the-art GPU techniques, see [23].

Table 3 shows a comparison between different computer architectures reported in [24]. The data is reported

per physical chip. The GPP is an Intel Core i7-965 Quad Extreme. The NVIDIA GPU is the Tesla C1060. The

FPGA is the Virtex-6 SX475T.

From table 3 is derived that all architectures support parallel processing. Coding type separates those

platforms into two groups: hardware-based and software-based coding techniques. The effectiveness of using

some of those platforms is mainly determined by the programmer’s aptitude. The device flexibility and errors

corrections are serious issues. Except ASICs, all platforms are flexible, and all of them support error correction.

Those facts explain why developers discard the ASICs as a viable candidate in algorithms implementation in
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Table 3: Comparison between GPP, ASIC,FPGA and GPU. Symbol ”-” means not measured

GPP (or CPU) ASIC FPGA GPU

Parallelism Partially Fully Fully Fully

Coding type Software Hardware Hardware Hardware

Flexibility Yes No Yes Yes

Error correction Yes No Yes Yes

Frequency (GHz) 3.2 < 0.55 < 0.55 1.3

Single Precision GFLOPS 102.4 - 550 936

Double Precision GFLOPS 51.2 - 137 78

Single Precision GFLOPS/Watt 0.8 - 13.7 5

Single Precision GFLOPS/USD 70 - 138 550

hardware. Considering the performance per dollar, the GPU outperforms GPP and FPGAs. FPGAs have the

lowest frequency but the best performance per watt. With regard to the performance issue, applications typically

exhibit vastly different performance characteristics depending on the platform. More about this can be found in

Cullinan et al.[25].

Che et al. in [26] and Cullinan et al. in [25] compare GPUs and FPGAs. GPUs perform better when the

dataflow exhibit no inter-dependencies and the required process can be done in parallel. The same performance

is possible in FPGAs when the control structures has a lot detailed low level control structures which cannot be

efficiently implemented in high level languages. If the memory accesses increase and parallelism is limited, the use

of GPUs is not recommended. FPGAs are not recommended when they must deal with applications that require

high complexity in logic and dataflow design. Most of the modules within a a GPP do not operatie on each cycle

[27]. In comparison, usually most of the modules within a FPGAs are active in each clock cycle. FPGAs are

more power efficient than GPP. Application systems on FPGAs are usually developed using VHDL or Verilog

which usually require more design effort. As it is mentioned in [24], there is no one-size-fits-all architecture for

scientific computing. GPP, GPU and FPGAs will be used in different scenarios depending on the characteristics

of the algorithms.

3. Related work.

Hardware implementations of algorithms takes advantage of inner parallelism of hardware devices. In conse-

quence hardware devices (such as GPUs and FPGAs) gain every day more attention to be used as development

platforms. Frequent itemsets mining is formed by various algorithms (sequential and parallels) that can be
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Figure 11: Frequent Pattern Mining taxonomy based on algorithm type that it is implemented.

Figure 12: Frequent itemsets mining taxonomy based on hardware devices used in the reviewed literature.

implemented in hardware efficiently after a proper transformation.

In the revised literature, the most of algorithms for frequent itemsets mining are based in Apriori [3], FP-

Growth [28] and Eclat [29]. Fig.11 shows a taxonomy of the differentworksthat compute frequent itemsets mining

focused on the algorithms that they are based on.

Fig.11 shows that Apriori is preferred instead FP-Growth or Eclat. Such behavior could be explained by the

fact that Apriori is easier to implement and older than FP-Growth and Eclat. Based on the hardware device

that implements those architectures for frequent itemsets mining, the reviewed literature can be classified as is

shown in Fig.12.

In Fig.12 we can notice that FPGAs is preferred to be used for implementing frequent itemsets mining tasks.

Fig.13 shows the trends of frequent itemsets mining on databases and data streams. As the figure shows, just

one architecture is reported for mining frequent itemsets on data streams and several researches are referred to

databases.

Using the presented taxonomies, the reviewed literature can be organized as it is shown in table 4.
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Table 4: Principal algorithms and architectures for the frequent itemsets mining problem in hardware.

Title Author Year Device Based Source

Efficient Hardware Data Mining with the Apriori

Algorithm on FPGAs. [4]

Baker 2005 GPU Apriori BD

An Architecture for Efficient Hardware Data

Mining Using Reconfigurable Computing Sys-

tems. [5]

Baker 2006 FPGA Apriori BD

Hardware Enhanced Mining for Association

Rules. [8]

Liu 2006 FPGA Apriori Stream

Parallel Data Mining on Graphic Processors. [30] Fang 2008 GPU Apriori BD

Hardware-Enhanced Association Rules Mining

With Hashing and Pipelining. [14]

Wen 2008 FPGA Apriori BD

Novel Strategies for Hardware Acceleration of

Frequent Itemset Mining With the Apriori Algo-

rithm. [1]

Thöni 2009 FPGA Apriori BD

Frequent Itemset Mining on Graphic Processors.

[31]

Fang 2009 GPU Apriori BD

GPApriori: a GPU-accelerated Frequent Itemset

Mining. [15]

Zhang 2011 GPU Apriori BD

Mining Association Rules with Systolic Trees.

[10]

Sun 2008a FPGA FP-Growth BD

A Reconfigurable Platform for Frequent Pattern

Mining. [9]

Sun 2008b FPGA FP-Growth BD

A Highly Parallel Algorithm for Frequent Itemset

Mining. [16]

Mesa 2010 FPGA FP-Growth BD

Design and Analysis of a Reconfigurable Platform

for Frequent Pattern Mining. [11]

Sun 2011 FPGA FP-Growth BD

Accelerating frequent itemset mining on graphics

processing units. [32]

Zhang 2013a GPU Eclat BD

An FPGA-Based Accelerator for Frequent Item-

set Mining. [33]

Zhang 2013b FPGA Eclat BD

FPGA Acceleration for Intersection Computation

in Frequent Itemset Mining. [34]

Shi 2013 FPGA Eclat BD
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Figure 13: Frequent itemsets mining taxonomy based on data sources used by the hardware architectures.

3.1. Frequent itemsets mining based on hardware acceleration.

The following algorithms were designed to solve the frequent itemsets mining problem. Frequent itemsets

mining in general is a more challenging task than frequent items mining. Only one of the revised papers was

applied to data streams, which can be explained by the high computational complexity required for that task.

In frequent itemsets mining, there are three main approaches: algorithms that use Apriori as the starting point,

algorithms that use FP-Growth and those that use Eclat. Following the reviewed state-of-the-art for each

algorithm is presented.

3.1.1. Apriori-based.

Apriori [3] is perhaps the most popular correlation-based Data Mining algorithm for the frequent itemsets

mining problem. However, it is a computationally expensive algorithm and the running time can extend up to

days for large databases in the order of gigabytes. Apriori uses the downward closure [3] property of itemsets

support that any subset of frequent itemsets must also be frequent. Thus during each iteration of the algorithm’s

execution only the itemsets found to be frequent in the previous iteration are used to generate a new candidate

set, Ck. Before inserting an itemset into Ck, Apriori test whether all its (k − 1)-subsets are frequent. This

pruning step can eliminate a lot of unnecessary candidates. To enable fast support counting, the candidates are

stored in a hash tree. An internal node of the hash tree at depth d contains a hash table whose cells point to

nodes at depth d + 1. All the itemsets are stored in the leaves. The insertion procedure starts at the root and

hashing on successive items, insert a candidate in a leaf. For counting Ck, for each transaction in the database,

all k-subsets of the transaction a regenerated in lexicographical order. Each subset is searched in the hash tree,

and the count of the candidate incremented if it matches the subset. This is the most compute intensive step of

the algorithm.

Baker et al. were the first authors to study the problem of efficient hardware implementations of the Apriori

algorithm [4], which mainly involves efficient implementation of the set membership functions efficiently as well

17



as the algorithm control. Authors addressed these issues by using a hybrid systolic array3-microcontrolled data

paths and efficient design principles. They also presented a strategy called Systolic Injection, a contribution to the

general use of systolic arrays that can be used in many other applications. Through the use of the systolic array,

the proposed architecture allows for increased frequency performance, decreased number of interconnection, and

simple and easily scalable processing units.

The main issue with the Apriori algorithm is the data complexity. Each candidate must be compared against

every transaction set. This results in a high running time for a single generation, O(‖T‖‖C‖‖t‖)(where T is a

transaction and C are the items in the transaction T ), assuming the subset function can be implemented in time

‖t‖. However, the parallelism contained in the loops allows to explore hardware acceleration. In the proposed

architecture, the computation units are fully interconnected, forming a chain (or linear array). Data flows in one

direction and stall information flows in the opposite direction. Each unit contains memory locations to store the

candidates whose support was calculated and to allow for temporal stalling. A processing unit is composed of

the candidate memory, an index counter, and a comparator, which allows the output of the candidate memory

to be compared with an incoming item.

In 2006 Baker and Prasanna proposed a new hardware architecture [5] for accelerating the frequent itemsets

mining based on Apriori algorithm. They ran several experiments and realized that the behavior of the Apriori

algorithm has certain characteristics that allow some redundancy between candidates to be extracted for use

in hardware. The common candidates (that are stored into memories) in a transaction can be reutilized in

later iterations by using a specific heuristic. This allows to keep the memories consumption low, and this is an

extremely valuable characteristic. Also, experiments revealed that the performance bottleneck for the Apriori

algorithm is determining if each candidate is a subset of each transaction sets (the support computing operation

in the Apriori algorithm [3]). To do this, each candidate is compared against every transaction set resulting

in an intense computing operation. Based on this fact, Baker focused his research on accelerating the support

computing operation.

The main contribution in [5] is the design of a highly parallel custom architecture using Content Addressable

Memories (CAMs) organized into a bitmap structure. The bitmapped CAMs emulate a linked list data structure

in order to determine subset satisfaction for a large number of candidates simultaneously. Using CAMs, the time

and area required for executing the subset operations fundamental to Data Mining can be significantly reduced.

The success of this approach depends on the similarity of the candidates processed. However, determining

the appropriate ratio number of CAM elements to candidates in a unit is not a trivial task. The experiments

performed using industry-standard databases showed that the proposed architecture provides a minimum of 24x

3Systolic Array is a pipe network of processing blocks called cells. Systolic Arrays is a specialized parallel computing, where cells

(i.e. processors) compute data and store it independently of each other.
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Figure 14: The “Receiving-storing-processing” approach proposed by Liu et al. in [8] for the frequent temporal patterns mining

process.

(and often much higher) time performance advantage over the fastest software Apriori implementation [35].

Papers explained above were focused on processing databases. In the revised literature, only one paper that

performs frequent itemsets mining in data streams was found. Liu et al. in [8] proposed a hardware-enhanced

mining framework and an Apriori-like algorithm to mine frequent temporal patterns4 from data streams. This

architecture is specially designed to mine those itemsets of length 1 and 2 because the computing of L1- and

L2-itemsets is the most time-consuming task in their algorithm, so they propose to offload this operation to

hardware to improve the overall performance. They describe in their work the main issues that must be dealt

with when data streams are processed which are those that were explained in section 2.3. According to the

authors, the novelty in this hardware-enhanced approach resides in the transformation of the items transactions

in a data streams into a matrix structure and the efficient mapping of operations for discovering frequent items

into highly efficient hardware processing units. The “Receiving-storing-processing” approach shown in Fig.14 is

used to perform the transformation of transactions of streams into matrix. Experiments on synthetic data set

showed that the throughput is two orders of magnitudes larger than that of its software counterpart.

Fang et al. propose in 2008 a novel parallel Data Mining system called GPUMiner [30]. After a simple

performance profiling of the Apriori algorithm, they concluded that a support counting is a hot spot in the

Apriori execution, spending around 90% of the execution time in this function. As many others, Fang et al. rely

their work on the massively multi-threaded SIMD architecture provided by GPUs, and the use of bitmap memories

structures to improve the counting capability. The bitmapped memories make easier the data parallelism in the

SIMD execution. Also, they enhance their implementation using memory optimizations and thread parallelism.

The memory optimizations include the local memory optimization for temporal locality and the coalesced access

optimization for spatial locality.

4Frequent temporal patterns are referred to those items or itemsets that are frequent in some time period.
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GPUMiner is composed by three modules: a module to handle the IO data transfer between the GPU and the

GPP efficiently; a GPU-GPP co-processing parallel mining module and a GPU-based visualization module. The

most attractive module for the purpose of this PhD. Proposal is the second module: the k-means [36] and the

Apriori algorithm that was implemented within this module. K-means is a largely parallelizable algorithm that

has been hardware accelerated in many previous works. In their paper, Fang et al. focused in the bitmapped

Apriori which represents the transactions in a bitmap structure and the counting operations were implemented

using simple logical operations like Ands and Ors.

To demonstrate the validity of GPUMiner’s Apriori implementation, the FIMI’03 best implementation [35]

was used as the baseline. Also, three FIMI’03 datasets were used (a small, medium, and large data sets used

in FIMI’03). To prove the viability of the proposed bitmapped Apriori algorithm, two implementations were

developed: a GPP and GPU implementation. Both implementations were faster than FIMI’s: Apriori, achieving

a speedup up to 10.4x and 7.5x, respectively when the support used is about 1%. Furthermore, the speedup of the

bitmapped Apriori algorithm with the CPU or the GPU implementations, increases as the data size increases.

As conclusion, both implementations of the proposed bitmapped Apriori algorithm are faster than the FIMI

implementations throughout a range of support thresholds.

Apriori is also used in association rules mining. In such manner Wen et al. proposes HAPPI (HAsh-

based and PiPelIned) architecture [14] for the association rules mining in hardware, using FPGAs. In the

design of HAPPI architecture authors identified those functions of the mining process that are appropriate to

be implemented in hardware. Also, authors incorporated the pipeline methodology to compare itemsets and

gather useful information that allowed to reduce the number of candidate itemsets and items in the database

simultaneously. HAPPI implements five operations: support counting, transaction trimming, hash table building,

candidate generation, and candidate pruning (the sketch of Apriori is shown in those five operations). First of

all, the database is fed into the hardware and, at the same time, the candidate itemsets are compared with the

items in the database using a systolic array. Second, HAPPI determines the frequency on which each item occurs

in the candidate itemsets in the transactions at the same time. Infrequent items can be eliminated using this

information. Third, the itemsets from transactions are generated and hashed them into the hash table. The

hash table is used to filter out unwanted candidates itemsets. After the hardware compares candidate itemsets

with the items in the database, the trimming information is collected, and the hash table is built. Based on

the trimming information, items are trimmed if their corresponding occurrence frequencies are not larger than

the length of the current candidate itemsets. In addition, after the candidate itemsets are generated by merging

frequent sub-itemsets, they are sent to the hash table filter. If the number of itemsets in the corresponding

bucket of the hash table is less than the minimum support, the candidate itemsets are pruned.

In order to demonstrate the feasibility of HAPPI, some different experiments were conducted. The T10I4D100

dataset was used with different numbers of items in the database. The minimum support was set to 0.5 percent.
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Figure 15: A sketch of HAPPI architecture.

Wen et al. also implemented an approach based on [4] (called Direct Comparison, DC) for comparison proposes

and HAPPI outperforms DC in some orders of magnitude. The main improvement of the execution time results

from the hash table filter and the pipelining strategy.

Another attempt to speed-up Apriori algorithm was conducted by Thöni et al. in [1]. Thöni et al. proposed

an architecture that uses the block RAMs of a Virtex V FPGA device instead of using logic cells. They also

present a strategy to store candidates, effectively shifting resource utilization from logic to block RAMs, thereby

freeing up scarce logic resources for actual execution of logic operations. The proposed architecture is composed

of a systolic array that comprises a set of data path units (or cells) sequentially connected by a parallel data

and control bus. Sequential and control-intensive operations are left for implementation in a controller which

can be realized in either hardware or software. In this way, the proposed architecture only addresses the support

counting stage. To the correct performing of the architecture, memories depth must be chosen to equal or exceed

the number of frequent items of any database being processed. This approach is unrealistic beyond out of some

cases in scientific researches. To test the performance evaluation of the proposed architecture, authors used the

same dataset that were used by Baker and Prasanna in [4] and [5]. Baker and Prasanna targeted their architecture

to a Virtex II FPGA Device whereas Thöni el al. used a Virtex V FPGA device. As a direct comparison was

unfair, Thöni compared both implementations in terms of area utilization and frequency of operation obtaining

better results than those reported by Baker and Prasanna.

In 2009, Fang et al. proposed new architecture to speed-up frequent itemsets mining using an algorithm

based in Apriori and a GPUs [31]. Authors developed two Apriori’s implementations named Pure Bitmap-

based Implementation (PBI) and Trie-based Implementation (TBI). As in other works, the advantage of the

GPU’s massively multi-threaded SIMD architecture is used as main acceleration source. Both implementations

employed a bitmap data structure to exploit the GPU’s SIMD parallelism and to accelerate the frequency counting

operations which facilitates the fast set intersection to obtain transactions containing a particular itemset. The

bitmap structure to store the occurrences of items in transactions was selected because it is more efficient to be

partitioned and used with the SIMD processors. Besides, a lookup table was used to facilitate support counting

since that operation is the most time-consuming component in the Apriori algorithm.

Both of PBI and TBI implementations follow the workflow of the original Apriori stated in [3]. First, PBI
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implementation features regular data access patterns, which are a best fit to the GPU; however, it may cause

redundant computation and data access between frequent itemsets of different sizes. To solve such issue, TBI

was implemented. TBI adopts a trie structure to represent itemsets and utilizes the CPU for trie traversal

and incremental maintenance. Both implementations were evaluated using a synthetic and real-world datasets,

and both implementations had proven to be up to two orders of magnitude faster than optimized CPU-based

Apriori implementations. The time for data transfer between the GPU memory and the CPU memory, candidate

generation, and support counting dominates the total running time.

Besides Fang’s work, in 2011 Zhang et al. [15] proposed another architecture based on GPU to speed-up

Apriori, taking advantage of SIMD architecture named GPApriori. Authors designed a new memory structure

to represent the items transactions, named “static bitset”. This data structure improves upon the traditional

approach of the vertical data layout in state-of-the-art Apriori implementations. To improve the performance of

Apriori, they parallelized the support counting on the GPU. GPApriori has two keystones:

• Data representation. Here, Zhang et al. proposed a new way to represent the input items transaction

and they named it “static bitset”. The bitset representation requires more memory space than the vertical

transaction list representation but is more suitable for designing a parallel set join operation, which is

better suited for GPUs. Joining two bit-represented transaction lists can be performed by a “bitwise and”

operation between the two bit vectors.

• Support counting. In Apriori, support ratio is computed by multiple passing over the transactions

database. This requires considerable binary searches and trie traversal which is not suitable to be exported

to GPUs. The GPU support counting proposed by Zhang is based on complete intersection, where candi-

dates are copied from main memory to graphic memory by host code, the GPU calculates their support

ratio value by executing bitwise intersections on their vertical transaction lists, and the resulting support

values are copied back to main memory. This data transfer into GPU and GPP could involve an execution

delay in GPApriori. To improve this task, they perform the support counting using CUDA [37] and several

optimization techniques (as candidates preloading, hand-tuned loop unrolling to improve the kernel speed

and hand-tuned block size further) were introduced.

To prove the suitability of GPApriori, the Borgelt’s Apriori [38] was used as baseline. Several experiments

were conducted using UCI [39] dataset. The comparison of GPApriori and CPU-based showed that on the smaller

dataset called Chess, the GPU version can achieve a 10X speed up while for the dataset Accident (which is larger

than Chess dataset), the speed up ranges from 50X to 80X. In general, the performance scales with the size of

the dataset. Experimental results show that GPApriori outperforms Borgelt’s Apriori on the most of moderate

sized datasets with 4X-10X speed up and on a large dataset Accident, the speed up ratio can reach up to 80X.
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3.1.2. Partial Remarks.

The algorithms that mimic the Apriori-based schemes in hardware require loading the candidate itemsets and

the database into the hardware. This strategy is limited by the capacity of the chosen platform: if the number of

items to manage is larger than the hardware capacity the items must be loaded separately in many consecutive

times degrading performance. In consequence, the support counting must be executed several times. Since the

time complexity of those steps that need to place candidate itemsets or database items into the hardware is in

proportion to the number of candidate itemsets and the number of items in the database, this approach is very

time consuming. In addition, several candidate itemsets and a large database may cause a bottleneck in the

system.

In the revised algorithms, researchers focused their contributions in technical issues rather than theoretical

enhancements. Basically, the reported improvements are listed as follow:

1. Enhanced data structures and new strategies for data partitioning.

2. Parallelize certain functions of algorithms.

Apriori-based algorithms require many passes over the database. This is forbidden in data streams mining

due to the Expiration restriction (see section 2.2 for further information).

3.1.3. FP-Growth-based.

Another approach to process frequent itemsets is using a tree-based database of transactions representation.

One of the most successfully exponent of this approach is FP-Growth algorithm [28]. FP-Growth is one of the

fastest and efficient algorithms reported for frequent itemsets mining. It has been implemented in several ways,

including sequential and parallel approaches. FP-Growth is based on a prefix tree representation of the given

database of transactions (called FP-tree). The FP-tree representation allows saving a considerable amount of

memory for storing the transactions. In FP-tree representation, every transaction is stored as a string in a trie

along with its frequency. Fig.16 shows the FP-tree presentation for transactions shown in table 5.

In the building process of FP-tree data structure if one transaction is a prefix of another transaction, it will

share the same path in the FP-tree (the counter of such transaction will be increased). The maximum number

of children in FP-tree will be, in the worst case, 2n, where n is the number of items in the database.

FP-Growth performs two passes over databases: in the first one the a FP-tree is built up. The frequent

itemsets are generated in the second pass using a recursive elimination scheme, where all the items that do not

exceed a defined threshold will be deleted.

In 2008 Song Sun and Joseph Zambreno proposed an architecture [10] to speed up the association rules mining

process based on FP-Growth. To emulate the FP-tree data structure they proposed a new hardware structure
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Figure 16: The FP-tree data structure.

Table 5: An example transaction database. Each row in the table corresponds to a transaction.

ID Items

1 B, C, D

2 B, C

3 A, C, D

4 A, C, D

5 A, B, C

6 A, B, C

7 A, B, D
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Figure 17: Systolic tree architecture that emulates the FP-tree data structure represented in Fig. 16.

named systolic tree5. A systolic tree could be seen as a tree where each node is a processing unit which has their

own logic. Fig.17 shows the systolic tree built for the FP-tree represented in Fig.16.

The main difference between the FP-tree and systolic tree structures is that the systolic tree has a control node

which governs their behavior. All inputs and outputs of the systolic tree pass through and they are controlled

by the control node. Systolic tree structure contains three different nodes (or processing elements PE) types:

the Root PE, which controls the architecture; the Counting PE which performs counting and calculating; and

the General PE. Each General PE has one input from its parent and two outputs (to its child and siblings

respectively). The main idea implemented in this architecture is to build a lexicographic tree while items flow

through the systolic tree. When the complete database is mapped into a systolic tree, each PE will contain the

frequency of the respective item.

There are three processing modes for the PEs: Write mode, Scan mode and Count mode. In the Write mode,

the systolic tree is created and initialized. The Scan mode verifies if an itemset is frequent and Count mode

return all the frequent itemsets. The systolic tree architecture was simulated and synthesized, and to prove

their feasibility a series of experiments were run based on the simulation results and FP-Growth algorithm.

Experiments demonstrate that the run time of the systolic tree implementation depends only on the number of

frequent items while the run time of FP-Growth is closely related to the size of the FP-tree. When the number

of frequent items in the systolic tree is greater than 11 then the performance is worse than FP-Growth. When

the size of the systolic tree is 10, the mining speed is 24 times faster than FP-Growth. The throughput obtained

in simulation was around 3Gbps.

Also in 2008, Sun and Zambreno propose a new hardware architecture for frequent itemsets mining using a

systolic tree [9]. Similar to [10], the goal of this architecture is to emulate the original FP-Growth algorithm

while achieving a much higher throughput. The main contribution in this paper is that Sung et al. modified

the original scheme introduced in [10] by eliminating the counting nodes (see Fig.18), and provide a new count

5In VLSI terminology, a systolic tree is an arrangement of pipelined processing elements in a multi-dimensional tree pattern.
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Figure 18: Enhanced systolic tree architecture that emulates the FP-tree data structure represented in Fig. 16. Notice that the

Counting PE was eliminated in this representation.

Figure 19: Hardware-software architecture for frequent itemsets mining using systolic trees proposed by Sun in [9].

mode algorithm.

Sun et al. implemented their architecture using a software-hardware coprocessing approach. Following the

FP-Growth processing scheme, two scans of the database are required. In the first scan, both the set of frequent

items and the support count of each frequent item are computed. This task is implemented in the software

component of the system as shown in Fig.19. To compute the frequent itemsets, each candidate frequent itemset

is passed by the software module into the systolic tree using the Processor Local Bus (PLB) which is a high

speed and bandwidth bus. The systolic tree then reports the support count of the itemset back to the software

module.

Several experiments were carried out to prove the feasibility of the proposed architecture. As baseline, a java

implementation of FP-Growth algorithm was used over three benchmark datasets (Accident, Chess and Retail,

taken from UCI Repository [39]). The projection and partition of the database were necessary in some cases.

Experiments demonstrate that, in the worst case, the proposed architecture outperform FP-Growth in almost

12x.

In 2010 Mesa et al. [16] proposed a novel architecture that used FP-Growth as the starting point. They

proposed a vertical bit vector data layout to represent items and transactions. This layout allows to calculate

the support by using logical AND and OR operations. Mesa et al. defined a two-dimensional matrix to store

the database where the columns represent the elements of the dataset and the rows represent the transactions.

Using such data representation, Mesa et al. proposed an algorithm that performs a search over the solution
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space through the equivalence class. This search presumes a lexicographical order over the items. This is a

two-dimensional search (bottom-down, right-left) both breadth and depth are performed concurrently on the

FPGA. The proposed algorithm does not need a candidate generation stage, and it uses a binary tree structure

of processing elements. This structure represents a systolic tree, and it was chosen because it allows increasing

the concurrent operations at each processing step exponentially. The size of the proposed architecture grows

according to the number of frequent items that it is capable to handle. For the chosen hardware device, only 11

items can be processed. Experiments demonstrate that the proposed architecture outperforms [9] almost in one

order of magnitude. Also, the architecture performs better when the density of the database and the number of

frequent itemsets increases.

In [9], Sun et al. explained in a detailed manner the systolic tree architecture and their approach [11]. In this

paper, the authors described the same idea that in [9], but they extended their paper with more detailed expla-

nations about systolic tree and the working modes of their architecture. Also, new experiments were performed

demonstrating that the systolic tree architecture can outperform best known FP-Growth implementation [40].

The performance measure in those experiments was the execution time of the whole systems on the benchmarks

with different support thresholds. The execution time only included the time for disk reading and memory IO

but excluded the disk writing time. The baseline FP-Growth algorithm was implemented in C++, and it was

taken from [40]. Experiments demonstrate that systolic tree is a valid architecture to mine frequent patterns.

For those datasets that have sizes who can be placed directly in the device, the systolic tree architecture always

outperforms FP-Growth. In such cases that the dataset could not be placed directly in the FPGA, a dataset

projection must be used and chosen. In this work, Sun et al. proposed one projection dataset strategy and prove

their feasibility. In such cases, FP-Growth outperforms systolic tree structure. This behavior is caused by the

overhead introduced by the projection strategy for database transaction mapping over FPGA. If the overhead

is not amortized by the run-time reduction, the systolic tree algorithm is slower than the original FP-Growth

algorithm.

3.1.4. Partial Remarks.

As well as Apriori-based algorithm, the FP-Growth-based algorithms need to download the mining data base

to FPGA. They also need two passes over the data base except Mesa et al. [16] but this one still need to download

the data base to the hardware device. This is impractical in data stream mining scenario due to the Expiration

restriction listed in section 2.2. Like others reviewed algorithms, authors focused their attention in better data

structures rather than substantial theoretical contributions.

As rule, FP-Growth based algorithm can handle a limited number of itemsets, less than 11 in the better [16]

cases which is inadequate for real-life applications. Although strategies for device re-utilization are proposed, no

concluding results of timing, throughput or performance are presented. Nevertheless, those algorithms based on

FP-Growth use the FP-Tree data structure which is very well suited for data stream mining applications.
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Figure 20: Horizontal and Vertical database layout of table 1.

3.1.5. Eclat-based.

Eclat[29] is the first algorithm for the frequent itemset mining that uses a depth-first search using an inter-

section set. Also, Eclat is the first that uses a vertical database representation instead of listing all transactions.

In this representation, each item is stored together with its support and uses an intersection based approach to

compute the support of itemsets. In consequence, the support of an itemset X can be determined intersecting

the supports of any two subsets Y, Z ⊆ X such that Y
⋃
Z = X. This type of representation is especially ben-

eficial when is used with depth-first search candidate generation because reduces the memory requirements and

processing time. Also, vertical representation is especially useful in hardware because the intersection process

can be performed using only a bit-wise AND operation, which is organic to be performed in hardware. Fig. 20

shows the vertical and horizontal layout of table 1.

Eclat handles a huge number of itemsets, but these itemsets were not generated completely in breadth-first

mode. Here arise the main issue in Eclat: the processed itemsets can not be pruned because the algorithm

does not have all frequent itemsets for the same level at each iteration. Eclat was studied in [38] and there

was shown that the occupancy of sorted-set intersection during the computation will increase rapidly while the

support value is decreasing. Because of that the speed of intersection of two sorted-sets is the key point affecting

the performance of Eclat. Nevertheless, there have been proposed efficient implementations of Eclat who solved

this issue, e.g. dExclat [41]. Due to the descendent strategy and the search tree characteristics, Eclat can find

previous maximal itemsets 6 which they will be supersets of some others where the traverse will be in descendent

order. Using this feature unnecessary traverse will be avoid, and this is the starting point of more efficient

implementations [38].

In 2013, approaches to perform frequent itemsets mining based on Eclat were proposed. Zhang et al. [32]

proposed a new algorithm named Frontier Expansion which uses a hardware-software co-design with a GPU

as coprocessor. Frontier Expansion uses Eclat as a starting point and therefore, uses a vertical-bit database

representation and using data parallelism. As it was mentioned, this type of data representation is especially

6An itemset X is maximal if it is not subset of any other known frequent itemset.
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useful for hardware designs. On the proposed co-design, which implement the Frontier Expansion algorithm, the

software on the host GPP dynamically controls the search boundary and the expansion rate on behalf of the

GPU kernel. This allows for the efficient utilization of the computational and memory resources of the GPU

co-processor. Zhang et al. also redesigned and optimized the GPU’s memory allocation strategy and added a

data preprocessing procedure to improve the memory utilization of the algorithm. The proposed co-design uses a

complex data structures which are controlled by software in host GPP while the hardware in the GPU performs

the intersections (logical AND operations) of the candidates transactions vectors sent by the software.

The key contributions of this work, according to the authors are:

• The implementation of a parallel GPU kernel for calculating the support using the vertical data represen-

tation.

• A dynamic frontier expansion approach that maps candidates to block of GPU while enforcing a tight

bound on memory usage.

• An approach for scaling to multiples GPUs.

Also, it can added:

• This work is the first that propose and implement an algorithm based on an approach different of Apriori

and FP-Growth, used so far in the revised literature.

After the proper implementation of the Frontier Expansion algorithm (which is available here7), several

experiments were conducted using state-of-the-art Eclat [38] and FP-Growth implemented by Goethal et al.

in [42] as baseline. Experiments demonstrate that the proposed Frontier Expansion algorithm obtains better

performance than state-of-the art Eclat and FP-Growth for dense datasets with low support value, which is the

circumstance under which sequential algorithms become expensive. This is because lower support ratios result in

an extra execution time required for support counting (GPU kernel), which is highly parallelized. The obtained

results indicate that the proposed approach can achieve up to 30 speedup over state-of-the-art CPU-only serial

implementations.

Although the Frontier Expansion algorithm improves the performance of ECLAT, it cannot be used for

mining data streams. Frontier Expansion uses a vertical database representation, where the database should be

stored before the processing start. Data stream management systems only can access current transaction, and

therefore algorithms that use vertical database representation can not be implemented straightforwardly to mine

data streams. Some buffering strategies can be used to get an excerpt of stream and handle it as a database to

be used by Frontier Expansion, but this will introduces unwanted delays in overall execution time.

7http://tachyon.cse.sc.edu/gpufim.html
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Zhang et al. presented [33], where is described a FPGA-based coprocessor architecture for Eclat algorithm.

Unlike other attempts to implement FIM algorithms in hardware, which use performance-limiting strategies such

as iterative database loading and runtime logic unit reconfiguration, the proposed architecture does not impose

limits on the maximum set size as a function of available FPGA logic resources. Besides, like original Eclat

algorithm, here is used the vertical database representation. According to the authors, the main contributions

of this paper are:

• Is the first FPGA implementation of the Eclat FIM algorithm.

• The proposed accelerator can handle large datasets without iterative database loading or logic reconfigu-

ration required by previous FPGA FIM designs.

• The proposed accelerator design employs a novel on-chip caching and associated data compression technique

to reduce frequency of off-chip accesses for intermediate results.

• Their design is scalable to multiple FPGAs.

In previous papers, it was evident that the systolic arrays-based designs introduce serious limitations (con-

cerning the memory consumptions and multiples passes over database) for mining large databases. To avoid this

issue, Zhang et al. chose to take a radically different approach. Instead of using a systolic array, they imple-

mented their processing element consisting of a controller unit (implemented by a finite state machine connected

multiple on chip memories. The Eclat algorithm is executed in the controller unit which performs a depth-first

search using an on-chip stack, generating its own sequence of addresses for accessing off-chip memory when the

support counting is calculated (this emulates the traverses over the search tree of Eclat).

To prove the performance of their design, 4 FPGAs (where each FPGA uses two 2GB of SODIMM and one

256 MB DDR2 onboard DRAM) were interconnected. This offer 15GB of total memory for the entire system

allowing to handle large databases without iterative loadings. The Eclat implemented cited in [38] was used on

a Dell PowerEdge R710 server as baseline. The server contains two Intel Nehalem Xeon 5520 CPUs and each

CPU runs at 3.2GHz, and the system memory is 16 GB. They used 4 synthetic datasets with 500K and 1000K

transactions and 300 - 500 items in each transaction. Due to limitations of the memory controller, the maximum

word length that can it handle is 256. The 256-bit processing element achieves a speedup of 4 to 5x compared

with the baseline, and the 128-bit PE achieves a speedup of 23x. The entire system achieves a speedup of 30

to 40x compared to the baseline. Also, Zhang et al. used the OpenMP framework described in their previous

work [43], to compare their result with a 16-thread X86 implementation. The speedup against 16-thread parallel

version ranges between 4.71 and 7.28x.

The proposed design employs off-chip memories to store the results. The communication time is a major

issue in this type of designs, and it was not reported. As previous work based on Eclat, this approach can not
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be applied straightforwardly to data stream scenarios due to the database representation. Using the vertical

database representation is needed to store all database in the device. This does not fulfill the restriction of

Expiration and Infinity of section 2.2.

Also using the Eclat algorithm as a starting point, Shi et al. [34] proposed an accelerator for certain functions

of Eclat. They performed an execution profile of original Eclat cited in [38] to analyze its features and get its

execution time in details. The test tool used was Intel Vtune Amplifier 2013, and the test platform was Intel

Core I7 920 Quadcore processor with 3.0GHz. The test data adopted was T40I10D100K (15MB), which has an

average of 40 elements in a transaction over 100,000 entries. The test results demonstrate that the intersection

computation is the most time consumption part in Eclat, and the percentage of intersection computation time

increases with the support value decreases (range in 70% for 5% of support and 93% for 0.5% of support).

Accelerating the intersection computation with parallel approach will reduce the overall execution time of Eclat

algorithm.

To accelerate the intersection computation, the authors propose an hybrid approach between software (on

GPP) and hardware (on FPGA) where software executes the control and simple functions and hardware executes

the intersection computation. To accomplish that, a full comparison matrix structure to perform the parallel

intersecting of two groups of data elements was proposed. In addition, a data generator to control the index

updating strategy was proposed. This data generator control guarantees the right load of the elements to be

intersected. The proposed approach can be describe as it is stated in the following enumeration:

1. Parallel load the data elements of two different sorted set from memory modules to two data vectors.

2. Send the these two vectors of data element to full comparison unit (in hardware) to find the common

values, and update the index according the last data in vector;

3. Write back the common data to the memory modules.

In order to compare the performance of software, the T40I10D100K data set was adopted to evaluate the

proposed hardware architecture. The selected hardware device was the Xilinx ML605 board which includes a

Virtex LX240T-1 FPGA, cannot provide enough input data bandwidth for the right database handling, so the

results were obtained by simulation. The experiment results show that the proposed solution can achieve 6x to

26.7x speedup under different support value for intersection computation in Eclat algorithm. This comparison

was performed between the original Eclat algorithm in software and the original Eclat algorithm using the

hardware accelerator. Due to the vertical database representation, this approach can not be neither used to

process data stream

3.1.6. Partial Remarks.

Eclat-based algorithm uses the vertical database representation in order to save memory and processing

time. This representation is adequate to be used in hardware design. It use the intersection of items to compute
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the support, and it is more efficient than hash-trees. All the Eclat-based implementations propose an hybrid

approach, where the most consuming functions were download to hardware while software controls the execution

flow and data structures.

Due to the bandwidth limitations of used hardware devices, very large transactions must be segmented. In

the reviewed papers, no segmentation strategies were reported.

Although the vertical database representation allows to save memory and processing time, it is not compatible

with the Expiration restriction as it was explained before. Also, the pruning strategy in Eclat is inefficient and

introduces delays that affect the performance of the algorithms. This two issues make Eclat impractical to be

used as a starting point for data stream mining algorithms.

4. Methodological foundations.

In this section the methodological formalization of the current research is presented.

4.1. Research Problem.

In recent times, it is evident that the classical paradigms for knowledge acquisition are not suitable to obtain

information from modern data sources. Databases are growing exponentially, and it is necessary to create

new methods and algorithms that can handle those huge data amounts. With the apparition of multicore

processing and distributed computing, parallel algorithms are gaining more attention, and they have been used

to deal with this growing data trend. Modern applications, such as web click stream, telephone records, network

traffic analysis, network intrusion detection, retail market analysis, stock market prediction and sensor networks

generate huge data volumes represented as streams. Due to the increase of this kind of applications it is necessary

to obtain useful knowledge from those data streams. As it was previously defined, data streams are a continuous,

ordered and potentially infinite sequence of items in real time where data arrives without interruptions at a high

speed. Also, data can be accessed just once, and the only assumption that can be made about bounds of streams

is that the total number of data is unbounded. It is unrealistic to store all items of data streams to process them

offline. These characteristics impose extra difficulties to algorithms and systems that process data streams.

Due to the high incoming rate, the impossibility to store the data and the huge volumes of items in streams,

software that analyzes such data streams can not process exhaustively all items. The supporting hardware and

software are not capable to deal with such intense processing. Instead, commercial applications that mine data

stream use an “approximate” processing approach. That is, they do not analyze all items that are present in

a flow; instead, they use some heuristic or probabilistic approach to determine which item is the most likely to

contain the desired information. There are applications that need intense processing requirements, e.g. intrusion

detection systems or network analysis systems. In this kind of applications, the immediate data analysis and

near-real-time response are extremely valuable. To fulfill these requirements it is needed to propose new parallel
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algorithms running on high-performance computing devices such as FPGAs. FPGAs can perform tasks in a high

parallel fashion, and this is very useful in data streams processing applications.

Frequent itemsets mining is one technique that is commonly used in data knowledge extraction and have been

used with success in databases scenario. To mine frequent itemsets in data streams efficiently, an alternative

would be to develop new parallel approaches that use custom hardware architectures. In the reviewed literature,

there is only one architecture to mine frequent itemsets on data streams.

Summarizing, data streams are a modern data source that are gaining interest in recent applications. Tra-

ditional approaches for frequent itemset mining are not suitable to be used in data streams, and this situation

introduces new challenges to this task.

4.2. Research Questions.

Based on the research problem exposed before then arise the following research questions:

1. How to perform the frequent itemsets mining on data streams efficiently and effectively outperforming the

state-of-the-art algorithms?

2. Which features of frequent itemsets mining process and data streams must be taken into account to develop

new efficient and effective algorithms for these tasks?

3. How to adapt the state-of-the-art algorithms to perform frequent itemset mining on data streams?

4. Which of the reported data structures can be used to mine frequent itemsets on data streams? How to

improve such data structures?

5. Which development platform is better suited to implement algorithms for mining frequent itemsets in data

streams?

4.3. General Aims.

The general aim of this research work is:

To develop parallel methods for frequent itemsets mining in data streams that outperform the state-of-the-art

algorithms for data streams analysis and that are suitable for being implemented in hardware-accelerated plat-

forms. The proposed methods must outperform in one order of magnitude (at least) the state-of-art algorithms

implemented in software.

4.4. Specific Aims.

1. To propose a flexible method for separating the incoming data stream into windows that it can be used by

the support counting algorithm.

2. To adopt data structures that can be used in frequent itemsets mining on data streams.

3. To develop new algorithms for frequent itemsets mining that use the separation method selected and the

data structures adopted.

33



4. To obtain parallel hardware implementation of the algorithms mentioned above that can perform frequent

itemsets mining at least 1 order of magnitude faster (without compromising effectively) than state-of-the-art

software implementations.

4.5. Expected Contributions.

The expected contributions of this proposal are listed as follows:

1. A new method for frequent itemsets mining on data streams.

2. A design of parallel one-pass algorithms to mine frequent itemsets on data streams.

3. A custom hardware architecture that implements the proposed algorithms. This custom architecture will

take advantage of inner parallelism provided by the hardware device used in its implementation.

4.6. Methodology.

To this research, according to the stated aims, the following phases are defined:

1. To gather the databases reported in the literature to test the proposed methods.

2. To evaluate methods to perform the transactions separation into windows inside data streams.

(a) To study the methods reported in the literature to separate transactions into windows inside data

streams.

(b) To identify on the studied methods which ones enhance the performance of the reported algorithms.

(c) To select one (or many) of the separation method that can be used in the new approach that will be

proposed.

3. To select a data structure that can be used in frequent itemsets mining on data streams.

(a) To study different data structures reported to store the itemsets on data streams.

(b) Select those data structures that can be used by the new method that will be proposed.

(c) Propose a new approach for itemsets representation based on selected data structures.

(d) Implement in hardware the proposed data structures and evaluate its performance.

(e) Analyze the experimental results obtained and identify limitations or elements that can affect the

performance of the proposed data structures. If such issues are detected, thenmust be corrected.

4. To develop new algorithms for frequent itemsets mining that use the separation method selected in phase

2.c and the data structures proposed in phase 3.c.

(a) To propose new algorithms that use the separation method and data structures in phases 2.c and 3.c.

These algorithms must be designed to be executed in parallel.

(b) To analyze the computational complexity of the proposed algorithms.

(c) To implement in software the proposed algorithms to verify their behavior.
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Figure 21: Proposed task schedule.

(d) To compare the obtained results by software with the results reported in literature to verify inconsis-

tencies.

(e) To analyze the experimental results obtained and identify limitations or elements that can affect the

performance of the proposed algorithms. If such issues are detected, thenmust be corrected.

5. To obtain a parallel hardware implementation of the methods proposed for frequent itemsets mining on

data streams.

(a) To implement in hardware the proposed methods in phases 2, 3 and 4.

(b) To validate the correctness of the algorithms implemented in phase 5.a.

(c) To analyze the experimental results obtained and identify limitations or elements that can affect the

performance of the proposed algorithms. If such issues are detected, thenmust be corrected.

4.7. Work Plan.

Fig. 21 shows a schedule of major activities to be undertaken for this proposal.

5. Preliminary Results.

In this section, the initial considerations taken in account to propose a solution to the investigation problem

presented in section 4.1 are presented. Some restrictions are identified and presented, as well as the preprocessing

strategy to transform the incoming data stream into a form that can be handled by the proposed algorithms.

Also in this section the adopted data structure is presented and explained. After these mandatory initial

considerations, the proposed method is presented.
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5.1. Restrictions.

As it was explained in section 2.3, data streams are a challenging data source. To mine frequent itemsets on

data streams, some restrictions must be imposed:

• Transactions and items must be delimited with some specials (and different) symbols or characters.

• The duplicate items (if exist) in transactions must be removed.

5.2. Preprocessing streams.

To accomplish with the second restriction, data preprocessing must be performed as the initial stage in the

proposed method. When the stream is received, all spaces between items must be removed. Also, all of the

duplicated items (if exist) must be removed. Also, all items in data stream that not fulfill the restrictions

adopted will be removed from the stream.

5.3. Transactions separation strategy.

The window model selection is crucial in order to determine which items can be regarded as frequent. In

practice, the window model establishes how to separate a data stream into portions named windows. It is inside

a window where an itemset can be regarded as frequent. The proposed method gets as an input the window

model to use in the mining process. This allows researchers to determine which model is better suited to be used

in a particular problem. After the literature was reviewed, the conclusion observed is that the selected window

model should not be an issue. The proposed method, and therefore, the hardware designs derived, must work

fine regardless of the window model selected.

5.4. Prefix tree data representation.

Due to the issues of data stream mining presented in section 2.3, a single-pass method is required to mine

efficiently data streams. The method presented in this PhD. Proposal adopts the Frequent Pattern tree (FP-tree)

approach presented on [9], which is based on [28]. The basic idea is to develop a tree structure of processing

units where the itemsets of data streams flow from the root node to leaf nodes. Although the FP-tree structure

is similar to the baseline algorithm, the logic implemented in each node is different.

The FP-tree structure is represented as a tree (named systolic tree) where each node has one child and one

sibling. For leaf nodes, the child and sibling nodes are null nodes. In this structure, the child node contains, as

a prefix, the itemset handled by its parent. Fig. 22 represents the FP-tree structure used.

In Fig. 22, the root node is represented by the label a, where its sibling is the node represented by the label

b. The child node of a is represented by the label ab, and this node shares the prefix a of its parent. The same

happens with the sibling node of ab (the node ac). Nodes ab and ac compose the Equivalent class of node a.

Fig. 23 shows the concept of Equivalent Class.
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Figure 22: FP-tree structure to mine frequent itemsets on data streams.

Figure 23: Equivalent class for items 1, 2, 3, 4, and 5.
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Figure 24: Behavior of the proposed algorithm.

Equivalent class can be defined by a set of items of the same size, assumed k, sharing the common k − 1

prefix. For example, itemsets (1, 2, 3), (1, 2, 4) and (1, 2, 5) are in the same equivalent class (1, 2,−). (1, 2, 3) and

(1, 3, 4) are not in the same equivalent class because they have the different 2-prefix (1, 2) and (1, 2). (1, 2, 3, 4)

and (1, 2, 3) are not in the same equivalent class because they have different size. All 1-item sets are in the same

equivalent class.

Using the Apriori property, which states that any subset of frequent itemset must be frequent [3] if a node is

regarded as frequent then its parent is frequent too with equal or greater frequency counting. This property is

specially useful for the flushing strategy implemented in Algorithm 3 and explained in section 5.5.

The size (in number of nodes) of the systolic tree is determined by the maximum length of the itemsets in

the incoming transactions that it must process, but as this can not be established a priori, the size of the systolic

tree will be determined by the capacity of the development platform. Assuming that the development platform

contains enough computational resources, the size of the systolic tree will be:

nodes = 2n − 1 (3)

Section 5.6 shows the experiments conducted to determine the behavior of the systolic tree while the length

of the incoming itemsets grows.

Nodes in the systolic tree have its own processing logic, that is presented in Algorithm 2. Previous approaches

[9, 10, 16] proposed architectures with a single control unit that governs all the algorithm’s behavior, and multiples

types of processing elements. The systolic tree presented in this PhD. Proposal implements a distributed control

scheme: the processing and control logic are distributed in each node of the systolic tree. This allows saving

computational resources due to the logic reduction.

5.5. Description of the proposed method.

The proposed method is formed by 3 algorithms. The diagram in Fig. 24 describes the 4 modules that

compose the frequent itemset mining on data stream approach presented in this PhD. Proposal.

1. A module that receives and preprocesses the current transaction in data stream. In this module, the itemsets

are transformed into a form that fulfills the restrictions indicated in section 5.1 (named Transactions

reception).

2. A module for window building according to the selected window model (named Window building).
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Figure 25: Flow diagram of the proposed method.

3. A module to support counting using a FP-tree structure (named Support counting).

4. A module to determine which itemset is frequent (named Frequent itemsets).

The inputs of the proposed method are:

• Input data stream.

• Support threshold (can be presented as percent or as a frequency value).

• Window model to use.

The output of the proposed method is:

• The frequent itemsets and its frequency counting (if the support threshold was expressed as a frequency

value) or support (if the support threshold was expressed as a percent value).

Fig. 25 shows in detail the flow diagram of this approach. The diagram is divided in 3 areas. Area 1 performs

the window creation, area 2 preforms the frequency counting and area 3 performs the support calculation.

The three areas of Fig. 25 indicate the algorithms that compose the proposed method. In area 1, the

mechanism to create the processing window is depicted. First, the data stream is received and according to the

selected window model and the chosen window size, the processing window is created. In area 2, the frequency

counting of itemsets is performed. The frequency is calculated for the processing window constructed in area 1
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by mean of systolic tree. Process in area 3 uses the frequency counting calculated and determines, based on the

Apriori property [3], which itemset can be regarded as frequent.

Algorithm 1 implements the processes that took place in area 1 of the flow diagram presented in Fig. 25.

This algorithm uses one of the following window model: landmark window, sliding window, damped window.

Also, the window size is needed, and it must be an integer value. The window size is the number of transactions

to be contained in the window. The output is the processing window window buffer, which is the input of

algorithm 2. Algorithm 2 get as input the processing window created by algorithm 1. Then each transaction is

flowed into the systolic tree to determine the frequency of each item. The output of this algorithm is the systolic

tree with the frequency counting of each node calculated.

The algorithm 2 or Frequency Counting is executed in parallel by each node of the systolic tree. Nodes in

the systolic tree must be in one of the following states:

• State 1 (Empty): Current node is not occupied (Occupied flag of the current node is set to false). In this

state, the current node is empty and it can store an itemset and therefore, it can count the frequency of

the stored itemset.

• State 2 (Occupied): Current node is occupied (Occupied flag of the current node is set to true). In this

state, the current node contains an itemset and therefore, its frequency counting.

When a node is in Empty state, it can accept the first item Si[0] of the incoming itemset Si, which is stored

in the Label variable. Then, the Occupied flag is set to true for next itemsets. Also, the Counter variable is

incremented and a reduced itemset S̃i is created by removing the itemset stored in the Label variable from the

original itemset Si. Following, if the reduced itemset S̃i is not empty, then it is flushed to sibling and child nodes

of the current node, which are in Empty state. The process is repeated for sibling and child nodes simultaneously

in parallel.

When a node is in Occupied state the itemset stored in Label variable is searched in the incoming itemset.

If it is found, the Counter variable is incremented, and a reduced itemset S̃i is created by removing the itemset

stored in the Label variable from the received itemset Si. If the reduced itemset is not empty, then it is flushed

to sibling and child nodes of the current node, which are in Empty state. The process is repeated for sibling and

child nodes simultaneously in parallel. If the the itemset stored in Label variable is not found in the incoming

itemset I, then the incoming itemset I will be flushed in parallel to the sibling node of the current node.

When windows are processed, the systolic tree is given as input to algorithm 3, which traverse the systolic tree

recursively from the root to the leaf nodes. When the leaf nodes are reached, the variable Counter is compared

against the minimum support value in variable min sup to determine if the itemset stored in the current node

can be regarded as frequent. If variable Counter is greater or equal of variable min sup, then the itemset stored
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Algorithm 1: Window creation.

Input: Data stream S.

Selected window model (window model).

Selecetd window size (window size).

Output: Transaction’s window (window buffer).

processed windows←− 0;1

window buffer.Capacity ←− window size;2

while Arriving transactions on data stream S do3

while window buffer.IsFull() == false do4

switch window model do5

case sliding window6

Get transaction Ti from S;7

if window buffer.Contains(Ti) == false then8

window buffer.Add(Ti);9

end10

case landmark window11

window buffer.Cappacity+ = window size;12

Get transaction Ti from S;13

if window buffer.Contains(Ti) == false then14

window buffer.Add(Ti);15

end16

case damped window17

window buffer.Cappacity+ = window size;18

Get transaction Ti from S;19

if window buffer.Contains(Ti) == false then20

window buffer.Add(Ti);21

end22

window buffer.Weight = 1/processed window;23

end24

end25

processed window + +;26

end27

end28

return window buffer;29
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Algorithm 2: Frequency counting.

Input: Transaction’s window (window buffer)

Output: Systolic tree with the counting frequency of each item in its corresponding node (systolic tree).

ni ←− systolyc tree.RootNode;1

foreach itemset Si in window buffer do2

Flush Si into ni;3

if ni.IsOccupied == false then4

ni.IsOccupied = true;5

ni.Label.Add(Si[0]) ; /* Node ni stores the first item of itemset Si. */6

ni.Counter + +;7

S̃i = Si.Exclude(ni.Item) ; /* S̃i contains all items of Si except the item ni.Item. */8

if S̃i.IsEmpty == false then9

StartParallalelBlock:10

ni ←− ni.ChildNode;11

Flush S̃i to ni and go to step 4;12

ni ←− ni.SiblingNode; Flush S̃i to ni and go to step 4;13

EndParallelBlock;14

end15

else16

if Si.Contain(ni.Label) == true then17

ni.Counter + +;18

S̃i = Si.Exclude(ni.Item);19

if S̃i.IsEmpty == false then20

StartParallalelBlock:21

ni ←− ni.ChildNode; Flush S̃i to ni and go to step 4;22

ni ←− ni.SiblingNode; Flush S̃i to ni and go to step 4;23

EndParallelBlock;24

end25

else26

ni ←− ni.SiblingNode; Flush Si to ni and go to step 4;27

end28

end29

end30

return systolic tree;31
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in Label and counting in Counter variables is stored in the frequent list. When the recursion is finished, the

variable frequent will contains all the frequent itemsets and its frequency or support counting.

Algorithm 3: Flushing strategy.

Input: Systolic tree with the counting frequency of each item in its corresponding node (systolic tree).

Minimum support value (min sup).

Output: Frequent itemsets and its support counting (frequents).

ni ←− systolyc tree.RootNode;1

if (ni.SiblingNode == null) and (ni.ChildNode == null) then2

if ni.Count == min sup then3

frequent.Add(ni.Item, ni.Count);4

end5

else6

StartParallalelBlock:7

ni ←− ni.ChildNode;8

Go to step 1;9

ni ←− ni.SiblingNode;10

Go to step 4;11

EndParallelBlock;12

end13

return frequents;14

It is valid to notice that the processing scheme that is presented can be scaled to multiple devices. With

proper interconnections, multiples processing units that implement the proposed method can be connected and

therefore, larger transactions can be handled.

5.6. Preliminary experimental results.

The present PhD. Proposal describes a new method for the frequent itemset mining on data streams. This

method, which is composed by 3 algorithms, is designed to be implemented in a custom hardware architecture.

To validate the concept introduced in this research, the algorithms were programmed sequentially in software

using C# language over the .Net Framework platform. The resulting prototype introduces visual elements to

facilitate its use and its experimentation.

As it was explained in section 5.4, the systolic tree can process a limited number of items which is determined

by the maximum length of the incoming transactions which contains itemsets. The processing method proposed

is insensitive to the support value selected, but not of length of the incoming transactions which is determined
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Dataset # Trans. ave. length Max. length. Min. length Alphabet

MSNBC 989818 2.825 4 1 1 - 17

Table 6: Characteristics of the chosen datasets.

by the computational resources of the selected development platform. If the chosen development platform can

hold a systolic tree with 1024 nodes, the maximum length of itemsets that it can be process will be 10. If the

length of incoming itemsets is greater, some itemsets will be not processed and therefore, the mining process will

be approximate. However, if the development platform can hold all the possibles itemsets, the mining process

will be exact.

To verify the correct functioning of the presented approach, some experiments were conducted. The pursued

objectives were:

• Verify the correct performance of the proposed algorithms.

• To measure how the systolic tree grows according to the length of incoming transactions.

To accomplish these goals, a dataset from UCI repository [39] was used. Table 6 describes this dataset after

preprocessed. The preprocessing consists of removing all the repeated items in transactions and spaces, as it

was stated in section 5.2. Due to MSNBC dataset is not designed for stream mining, the entire dataset was

considered as a window. The MSNBC dataset is formed from the logs for msnbc.com site. Each sequence in the

dataset corresponds to page views of a user during that twenty-four hour period. The FP-Growth reported in

[40] was chosen as a baseline, and the mining process was performed inside one window.

In order to validate that the frequency counting computed by algorithm 2 is correct, it was assumed that the

systolic tree can handle all possibles itemsets for used dataset. For various support values selected, experiments

demonstrate that the frequent itemsets detected by the proposed method, and its frequency counting, was the

same that the one obtained by the baseline FP-Growth.

Table 7 shows the behavior of the systolic tree while the incoming transactions grows, and Fig. 26 shows

graphically the same results. Experiments show that the systolic tree grows exponentially concerning to the

length of the incoming transactions. This effect can be attenuated using larger hardware devices or using

external memories, but it is still an issue to be taken in account. Memory consumption is a hot spot for hardware

designs. Experiments demonstrate that the memory needed for systolic trees of different sizes grows in almost

an exponential way. One systolic tree with 131 071 processing nodes requires near of 6Mb of memory. These

values are calculated for the software implementation, which may not be the same trend when it is calculated for

the hardware implementation. The processing time also grows linear concerning of the length of the incoming

transactions. Once again, these values are calculated for the sequential software implementation. The proposed
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Times (s)

Memory Tree Itemset FIS

Length Nodes (Kb) building flushing flushing Total

3 7 178.6 0.001 0.940 0.002 0.943

4 15 179.3 0.001 1.253 0.002 1.257

5 31 180.2 0.001 1.667 0.002 1.670

6 63 182.1 0.001 2.003 0.002 2.006

7 127 185.5 0.001 2.534 0.002 2.537

8 255 192.0 0.001 2.909 0.002 2.912

9 511 205.6 0.001 3.376 0.002 3.379

10 1023 232.1 0.002 3.739 0.003 3.744

17 131071 6445.0 0.056 6.274 0.099 6.429

Table 7: Behavior of the proposed method while the length of the incoming transactions grows.

Figure 26: Behavior of the proposed method while the length of the incoming transactions grows. a) Graph of the memory

consumption as the systolic tree is growing. b) Graph of the systolic tree size while the incoming transactions grows and c) Graph

of the processing time while the incoming transactions grows.
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algorithms are designed to be implemented in parallel, so the processing will be executed simultaneously and

after some initial time, the results will arrive continuously.

5.7. Analysis of the preliminary results.

The software implementation of the proposed method pursuits the main objective of determining whether

it is a valid solution for frequent itemset mining on data streams. Experiments demonstrate that for different

support values, the frequent itemsets and its frequency counting are the same that obtained by the baseline

software. The length of the incoming transactions, and therefore the systolic tree size, can affect these results.

For transactions of maximum size of 5, the systolic tree can handle 31 itemsets. Transactions of length 6 will

be treated like transactions of length 5, and the mining process will be approximate. In this case, not all of the

frequent itemsets will be returned, but those itemsets that are regarded as frequents by the proposed method

will be regarded as frequent with the same frequency counting by the baseline FP-Growth. In other words, if

the available computing resources of the development platform selected can handle any length of the incoming

transactions, the mining process will be exact. Otherwise, the mining process will be approximate with no false

positives. The software implementation validates the correct functioning of the proposed method and allows to

understand its functioning before implement it in hardware.

The Fig. 26 gives an approximate trend of the computing resources consumptions. After analyzing such

result it is necessary to introduce some optimizations to the proposed method in order to reduce the resources

consumption in the selected hardware device. The timing analysis indicates that the hot spot in the sequential

software implementation is the itemsets flushing. This issue would be solved in the hardware implementation

due to the parallel nature of the algorithms and the selected hardware device.

6. Conclusions.

The frequent itemset mining is a widely used Data Mining technique with outstanding results in database

scenario. Data stream mining is a recent research field where frequent itemsets are introducing. Due to the

continuity, expiration and infinity characteristic of data streams it is necessary to explore alternatives that allow

to increase the efficiency of the mining process in such datasets. One alternative could be the design of parallel

algorithms to be implemented in custom hardware architectures.

This PhD. Proposal introduce a new parallel method for frequent itemset mining in data streams which is

designed to be implemented in a custom hardware architecture. The proposed method is based on the FP-

tree data structure and it is composed of 3 pipelined algorithm. Some experiments were conducted and it can

be concluded that the proposed method correctly performs this task. When it is executed in a device with no

resources restrictions then the exact mining process is performed. By the contrary, when restrictions are imposed,

then the approximate mining process with no false positives is performed. From the experiments conducted it
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is derived that some adequations must be done to the proposed method in order to save computing resources of

the selected hardware device.

Based on the current state of this research and the results obtained in the experimentation it can be concluded

that the objectives presented will be accomplished, with the expected results and in the proposed time according

with the methodology and the presented work plan.
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