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E-mail: {hugojair, carloshg, allopez, mmontesg, emorales, esucar, villasen}@inaoep.mx

Abstract

With the increasing storage of images worldwide, automatic image annotation has become a very active and
relevant research area, however, it still lacks a benchmark specifically designed for this task, and in particular
for region-level annotation. In this report we introduce the segmented and annotated IAPR-TC12 benchmark, an
extended resource for the evaluation of automatic image annotation (AIA) methods. We present a methodology
for the manual segmentation and annotation of the images in this collection. The goal of this methodology is to
obtain reliable ground truth data for benchmarking AIA and related tasks. For annotation, an ad-hoc vocabulary
is defined and hierarchically organized. This hierarchy proved to be very useful for obtaining objective and struc-
tured annotations. Also, a soft measure for the evaluation of annotation performance is proposed, based on this
hierarchy. Statistics on the segmentation and annotation processes give evidence of the reliability of the proposed
approach. Visual attributes and spatial relations are also extracted from regions in segmented images. The latter
feature will promote research on the use of (spatial) contextual information for AIA and image retrieval. The
extended collection is publicly available and can be used to evaluate a variety of tasks besides image annotation;
this resource can also serve to study the use of automatic annotations for multimedia image retrieval; the latter
is a distinctive feature of the collection because, although there are several image annotation benchmarks, there
is currently no collection that can be used to effectively evaluate the performance of annotation methods in the
task they are designed for (i.e. image retrieval). We outline several applications and raise important questions
that might be answered with the annotated collection; motivating research in the areas of image segmentation,
annotation and retrieval as well as on machine learning.

1 Introduction

The task of automatically assigning semantic labels to images is known as automatic image annotation (AIA).
This research field has been identified as one of the hot-topics in the new age of image retrieval [2, 3, 4]. Besides
being relatively new, there has been a significant progress in this task since the last decade [5, 6, 7, 8, 9, 10, 11, 12].
However, the lack of a benchmark collection specifically designed for this task, has caused most methods to be
evaluated with small collections of unrealistic images [3, 5, 6, 7, 8, 9, 10, 11, 12]. For the same reason, most
region-level methods have been evaluated for their image-level labeling ability. As a result, the correspondence
performance (i. e. the capability to assign its correct label to a region) of such methods has not been reliably
evaluated [7, 13]. The ultimate goal of AIA is to provide support for content-based image retrieval methods (CBIR).
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Basically, the support consists of allowing image collections to be searched by using (restricted) natural language
statements. This type of search is known as annotation-based image retrieval1 (ABIR) and can be considered a
special case of CBIR [4]. When ABIR and CBIR are compared, the former usually outperforms the latter. However,
the image collections considered in such comparisons are well suited for ABIR (e. g. the Corel collection, see
Section 3) and, therefore, the real advantage of ABIR over CBIR cannot be objectively evaluated.

In order to provide reliable ground-truth data for benchmarking AIA we propose the annotation of the IAPR-
TC12 collection, an established image retrieval benchmark [14]. This collection is composed of around 20,000
manually annotated images with free-text descriptions in three languages. In this report we justify the need of an
AIA benchmark collection and describe ’why’ and ’how’ the annotation of the IAPR-TC12 results in a suitable AIA
benchmark collection. Furthermore, we outline interesting applications for the annotated IAPR-TC12 collection.
Once finished, the annotated collection could be used for evaluating AIA techniques as well as a source of training
data for learning algorithms. Because this is an image retrieval benchmark, the annotated IAPR-TC12 collection
could also be used to objectively compare ABIR and CBIR techniques; these approaches may be compared to
TBIR methods as well because the collection is already manually annotated. Further, the usefulness of combining
information from different sources can be evaluated (i. e. free text + image + automatic annotations).

The IAPR-TC12 collection already has several appealing features. Namely, the collection is an established
benchmark for several tasks related to image retrieval, is large size, is composed of realistic images of diverse
topics and has image-level annotations in three different languages [14]. We propose extending the benchmark
by manually segmenting the entire collection and labeling each resulting region according to a carefully defined
vocabulary. This extension will allow the evaluation of more multimedia tasks than those currently supported (e. g.
region-level and image-level AIA, visual concept detection and object retrieval). Furthermore, we have identified
several applications for the annotated collection as well as open questions that could be answered with this new
resource.

The rest of this report is organized as follows. In the next Section we introduce preliminary information regard-
ing AIA and we describe the usual methodology for the evaluation of AIA techniques. Next, in Section 3, we review
existing collections highly related to the annotated IAPR-TC12. In Section 4, we describe the methodology we are
following for the annotation of the IAPR-TC12 collection, statistics on the segmentation and annotation processes
are also described in that section. Next, in Section 5, we propose a new evaluation measure for AIA, experimental
results with a number of classifiers are presented for illustrating the advantages of this measure. Then, in Section
6, we outline some applications and questions that might be answered with the annotated collection, showing the
importance of this resource. Finally, in Section 7, we present conclusions derived from this work.

2 Preliminaries

In this section we introduce the AIA task and describe the main differences between this and the problem of
object recognition, this due to the fact that region-level AIA and object recognition are frequently considered the
same task. We also describe the usual methodology adopted for the evaluation of region-level AIA methods.

2.1 Automatic Image Annotation (AIA)

Textual descriptions in images are very useful because, when they are complete (i. e. the visual content of
images as well as semantic information are available), standard information retrieval techniques have reported
very good results for the task of image retrieval [15, 16, 17]. A complete description of images, however, can
only be provided by humans and in some cases humans must have some expertise in the domain of the collection
(e. g. a collection of medical images). Unfortunately, manually assigning textual information to images is both,

1Notice that ABIR is different from text-based image retrieval (TBIR), since the latter approach uses text that has been manually assigned
to images.
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expensive (in terms of human-hour costs) and subjective (due to the annotator criteria). Therefore, there has been
a recent increment in the interest on automatically assigning textual information to images.

The task of automatically assigning words to images is known as AIA. There are two ways of facing this
problem: at the image-level and at the region-level, see Figure 1. In the first case, keywords are assigned to
the entire image as a whole, not specifying which words are related to which objects within the image. In the
second approach, the assignment of annotations is at region-level within each image, providing a one-to-one
correspondence between words and regions. The latter approach provides more information (e. g. spatial relations
can be used) to the retrieval task and for this reason we consider it in this work. We should note that any region-
level annotation is an image-level annotation, and thus the latter is a special case of the former.

In region-level AIA each image I is segmented into NI regions, r1,...NI
. A region is normally represented by a

vector of features. Given a fixed annotation vocabulary (i. e. a set of semantic labels) W = {w1, . . . , wK}, the
annotation of a region ri is the label wi ∈ W that better describes ri. Then, the AIA task consists of finding a
mapping between ri’s and wi’s (i. e. wi = f(ri)).

The predominant approach to AIA is using semi-supervised latent variable models. Instances of this sort of
models are random fields [10], hidden Markov models [11], correspondence latent Dirichlet allocation (LDA)
[7, 9], probabilistic LDA [18], and cross-media relevance models [8], among many others (e.g. [3, 6, 7]). These
methods are based on the formalism of graphical models and by introducing latent variables they attempt to model
the region-label joint (P (ri, wi)) or conditional (P (wi|ri)) probabilities [7, 8, 10, 11]. The main advantage of
these methods is that they only require weakly labeled images for training, that is, images with associated labels,
without the need of the explicit correspondence between regions and labels, see Figure 1 left. The problem with
these methods is that correspondence accuracy is low.

Supervised methods, on the other hand, consider the annotation problem as a classification task, with as many
classes as labels are in the vocabulary. The goal is to find the best approximation to the map wi = f(ri), given
a set of N training region-label pairs D = {(r1, w1), . . . , (rN , wN )}. The one-versus-all (OVA) formulation
has been used in most of these works2 [12, 21, 23, 24, 25]. Supervised methods have shown to outperform
their semi-supervised counterparts. However, they require strongly labeled images, that is, images in which the
correspondence between regions and labels is provided [12, 21, 23, 25]. The difference in accuracy is significant
in favor of supervised methods and therefore it is worthwhile spending some time in building a training set of
annotated regions. Alternatively, methods that can take advantage of unlabeled data can be used for obtaining
these training samples.

2Multiple instance learning (MIL) methods are also popular in this task [26]. However, although they are supervised, MIL methods are
trained on weakly labeled images, as a result the performance is comparable to that of latent variable models [13].

Figure 1. Sample images from three related tasks. From left to right: image-level annotation and region-level annotation (from the Corel
subsets of Carbonetto et al. [10], the second image has been segmented with normalized cuts [61]), object recognition-detection (from the PASCAL
VOC-2007 data set [36]) and object recognition (from the Caltech256 data set [20]).
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2.2 AIA and Object Recognition

Often region-level AIA is considered an object recognition task, this is true to some extent. In both, AIA and
object recognition, the task is to assign the correct label to a region in a given image. In object recognition,
however, training data consists of images where the object to recognize is centered and occupies more than 50%
of the image (see Figure 1, rightmost image). Usually, no other object, from the set of objects to recognize,
is present in the same image. In region-level AIA, training data consists of annotated regions from segmented
images. However, the target object is not the main theme of the image. Furthermore, many other target objects
are present in the same image (see Figure 1). In consequence, the difference in accuracy is significant. For
illustration, accuracy in a benchmark object recognition collection is around 68% for 101 object categories [19],
while accuracy of region-level AIA in an AIA collection is at most 45% for only 22 labels [10, 21, 22, 23].

Another difference lies on the type of objects to recognize. While in object recognition, the objects are very
specific entities, like cars, gloves, bottles, soda-cans, and specific weapons, in region-level AIA the concepts
are more general, for example: building, church, grass, trees and archaeological ruin. The differences between
both tasks are due to the applications they are designed for. Object recognition systems are mostly related to
surveillance, identification, and tracking, while AIA methods are specially designed for image retrieval. The AIA
task is also related to other computer vision applications as well, including visual concept detection, object retrieval
(which can be conceived as image-level AIA), and object detection. However, some specific aspects still make AIA
different from these tasks.

2.3 Evaluation of Region-level AIA Methods

Image-level AIA is a special case of the region-level approach. In consequence, performance of region-level
methods can be assessed with methodologies designed for image-level techniques. However, evaluating region-
level methods by their ability of doing image-level AIA is not straightforward. This happens because by using
image-level evaluation methodologies the correspondence performance of methods can not be assessed. Corre-
spondence or localization performance is the capability of region-level methods of assigning the correct label to
each region. This ability is not important for image-level AIA methods because their goal is to assign words to
entire images.

One of the reference papers in AIA is due to Duygulu et al. [6]. In such paper the AIA problem is posed as
one of machine translation (from visual-terms to words). The collection used in that work and the methodology
proposed for evaluation have been adopted by most of the AIA methods [6, 7, 8, 9, 11]. However, while the data
and methodology are well suited for assessing the image-level performance of methods, correspondence accuracy
can not be objectively evaluated with them. In the rest of this section we focus on the evaluation methodology, the
issue of the collection is discussed in Section 3.

The usual methodology for evaluating AIA methods is as follows. A set of segmented images with annotations
at image-level is split into training and testing subsets. The training subset is used to learn model parameters.
Then, the trained model is used for assigning labels to regions in the testing images. The labels assigned to these
regions are merged obtaining an image-level annotation for each test image. Queries are formulated by using each
of the labels from the annotation vocabulary. Such queries are then used for retrieving images from the testing
set of images, annotated with the trained model. An image is said to be relevant to a query, if any of the labels
assigned by the trained model to the image is contained in the ground truth image-level annotation of that image.
The performance of AIA methods is then measured by counting, for each label, the number of relevant images
to queries. Standard evaluation measures from information retrieval (e. g. recall and precision) are used for this
task. In order to evaluate correspondence performance, Duygulu et al. analyze the correspondence results for
100 images [6] (500 were used in a later work [7]). However, this analysis can only give partial evidence of
the true correspondence performance for the methods. Furthermore, one should note that, in most of the cases,
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when AIA methods are evaluated the latter analysis is not carried out, and authors restrict themselves to evaluating
image-level annotation performance [3, 6, 7, 8, 9, 11].

This approach has been adopted by most AIA methods regardless of the type of method (i. e. supervised or semi-
supervised) and the goal of the method (i. e. region-level or image-level). However, AIA methods are evaluated
by their ability for assigning labels to images as a whole, and therefore, their correspondence accuracy can not be
determined. For illustration consider the annotations shown in Figure 2. As we can see both images are equally
good if we just consider the image-level annotation (i. e. ’grass’, ’lion’). In consequence, both annotations would
be similarly evaluated with the above described methodology. However, the annotation at the right is completely
wrong if we look at correspondence performance. A better, yet simpler, methodology would be averaging the times
a region is correctly labeled [13]. This simple measure would adequately evaluate the correspondence performance
in both annotations (the annotated IAPR-TC12 collection will allow this type of evaluation).

The methodology described in this section has been adopted because of the lack of an available benchmark
collection with annotations at region-level. In most of the cases researchers collect and manually annotate a small
set of images. However, none of these sets have followed an objective methodology, and the resulting subsets are
small, with a limited vocabulary and restricted to a type of images. The goal of this research is to provide a reliable
benchmark collection that can allow the effective evaluation of correspondence performance for region-level AIA
methods. Since image-level AIA, visual concept detection and object retrieval are closely related tasks, that can be
considered special cases of region-level AIA, the resultant benchmark could be used for these tasks as well. Object
recognition and detection methods could also be evaluated by using the collection, though we must emphasize that
it is not specially designed for these tasks. Furthermore, it could be used for benchmarking ABIR and for studying
the combination of diverse information extracted from images, free-text assigned to images and labels generated
with AIA methods.

3 Related work

A widely used collection for evaluating AIA is the Corel collection. It was first used by Duygulu et al. and it
consists of around 800 CD’s, each containing 100 images related to a common semantic concept. Each image is
accompanied by a few keywords describing the semantic or visual content of the image. For example, in Figure
3, sample images belonging to a common concept are shown. Besides the Corel collection is large enough for
obtaining significant results. There are several problems with this collection that make it an unreliable benchmark.
First, images are unrealistic because most of them were taken by professional photographers in difficult poses
and under controlled situations. Second, it contains the same number of images related to each of the semantic
concepts, as a result it is a balanced collection (rarely found in realistic collections). Third, Corel images are
annotated at image level, limiting its applicability to image-level methods. Fourth, it has been shown that subsets
of this database can easily be tailored to show improvements [27]. Finally, given that the collection is commercial

Figure 2. Sample image from the Corel subsets of Carbonetto et al. [10]. Left: correct region-level AIA, right: incorrect region-level AIA. Despite
the right image has zero (the worst) correspondence performance, both annotations are equally correct at image-level.
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Figure 3. Sample images belonging to the concept Auto Racing from the Corel collection.

it is copyright protected; as a result obtaining the collection is expensive and images can not be distributed among
researchers. Furthermore, the collection is no longer available, hindering the evaluation for new methods.

Recently, computer games have been used for automatically building resources for several computer vision
tasks [28, 29, 30]. ESP is an online game that has been used for image-level annotation of real images [29].
The annotation process ensures that only correct (correctness is measured by the agreement of annotators) labels
are assigned to images. The volumes of data that this game is able to produce are considerably large. However,
images are annotated at image-level and the data is not publicly available [personal communication]. Peekaboom
is another game that uses the annotated images generated with the ESP game [30]. In this game, the goal is to
provide objects locations and geometry labels. The resulting collection could be used to train learning algorithms
for a variety of tasks, including region-level AIA. However, since the number of annotators can be of the range of
millions there are not objective criteria for neither the annotation process nor the object localization. As a result,
the collection is not a reliable collection for benchmarking region-level AIA. Furthermore, as with the ESP game,
data is not publicly available.

A very important effort is being carried out by Russell et al. with the LabelME project [31]. This large scale
project is collecting large volumes of useful information for diverse computer vision applications. The goal is to
obtain segmentation and annotation information by using an online annotation tool. Segmentations are provided
by specifying polygons around each object, the annotation vocabulary is defined by the users. The advantages
of this collection is that it is publicly available and it is composed of many annotated images. The problem with
this collection for evaluating region-level AIA is that it has an open vocabulary, so that regions can be assigned
any word depending on the annotator intuition, even very different labels may be assigned to the same image.
Furthermore, it is no specially designed for region-level AIA methods.

Yao et al. are carrying out a valuable eort to create another large-scale benchmark collection; currently, more
than 630,000 images have been considered in this project [32]. Manual segmentations are very detailed; segmented
objects are decomposed and organized into a hierarchy similar to a syntactic tree in linguistics; information about
localization, 2D and 3D geometry is also available. The collection is divided into 13 subsets, according to the type
of images and their applications. This collection will be a very useful resource for building visual dictionaries and
as training data for learning algorithms. It can also be used to evaluate AIA methods; however, since the collection
lacks ground truth data to evaluate image retrieval (i.e. relevance judgments) it cannot be used to effectively assess
the impact of AIA methods on multimedia information retrieval.

There are several excellent object recognition collections for benchmarking [34]. Most notably the Caltech-101
[19], Caltech-256 [20], and the PASCAL VOC-2006 [35], and VOC-2007 [36] collections. The type of images in
such collections, however, can not be used for evaluating AIA methods (see Section 2.2). Even their use for the
evaluation of object recognition methods has been challenged [34]. In the Caltech data sets objects are centered
and occupy more than 50% of the image, furthermore no other object is present in the images (see Figure 1)
[19, 20, 34]. The PASCAL data sets are composed of more realistic images, however, the are only 10 objects
in the VOC-2006 data set and 20 in the VOC-2007 collection. Moreover, these data sets have been developed
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Collection Size Labels Segmentation Annotation Caption Type
Caltech-101[44] 9146 101 Automatic Image-level No Objects
Caltech-256[44] 30608 256 Automatic Image-level No Objects
Animals[45] 200 6 Automatic Image-level No Animals
Scene[46] 1300 60 Automatic Region-level No Nature
Caltech-101[46] 1680 28 Automatic Region-level No Objects
MSRC2[47] 591 21 Automatic Region-level No Objects
PASCAL[47] 5304 10 Automatic Region-level No Objects
Caltech-4[48] 3188 4 None Image-level No Objects
Caltech-101[48] 8677 101 None Image-level No Objects
Events[49] 1040 300 Grid Region-level No Events
LSCOM[50] 61901∗ 28 Grid Region-level No TV programs
GoogleImages[51] 11182 18 None Image-level Yes Animals, objects
MSRC1[52] 240 9 Automatic Pixel-level No Objects
Caltech-4[53] 3188 4 Automatic Image-level No Objects

Table 1. Analysis of several papers presented at ICCV’07, related to AIA or that involved image collections. The first column is the name of
the image collection. Size is the number of images in the database. Labels is the number of words used for the experiments in the cited paper.
Segmentation tells us if the image was manually/automatically segmented or not segmented. Annotation specifies the level of annotation (i. e.
image-level, region-level or pixel-level). Caption, reflects if there is any extra meta-data associated to the image. The last column refers to the type
of images in the collection. ∗ This is the size of the entire collection, the number of considered images is not detailed in the respective paper [50].

for benchmarking object detection and localization [34] and, therefore, they are not well suited for evaluating
region-level AIA.

There are only a few collections that can be used for (roughly) effectively evaluating region-level AIA methods.
Most of these, however, are restricted to specific domains, including cars [37], nature-roadways [38], animals [39],
landscape vs. structured classification [24], and natural scene classification [40]. The size of the data sets and the
restricted domains make them not adequate for the evaluation of general purpose AIA. Winn et al. segmented and
annotated a small set of 240 images, considering 9 labels only [41]. In a more recent work, a larger collection
with 591 images and 23 labels was created by Shotton et al. [42]. However, the size of these data sets and the
number of concepts are not adequate for evaluating AIA. Carbonetto et al. have provided three small data sets
with a larger number of labels (from 22 to 56) [10]. To the best of our knowledge these are the largest data sets
publicly available that have been annotated at a region-level. However, the data sets are still small and come
from the Corel collection. Furthermore, the images were segmented with poor quality automatic segmentation
methods (e. g. the normalized cuts algorithm [61], see Figures 1 and 2). A very relevant collection for AIA is
that provided by Barnard et al. [13]. The collection consists of 1041 images taken from a previous study for
benchmarking segmentation [43]. A straightforward methodology was proposed and followed for the annotation
task. Annotations are specified using WordNet and well defined criteria. The data set is small and the images
come from the Corel collection. However, the main contribution of that work is the evaluation methodology that
can be used for assessing algorithms even using other collections. Thus, this evaluation methodology can be used
with the segmented IAPR-TC12 collection in conjunction with the one proposed in Section 5.

It is important not only to consider a review of other relevant image collections, but also to analyze the sets
being used in current research. By looking at these image sets, it is easy to notice that although there are a number
of image collections available, most of the researchers tend to use their own or to take subsets of them. The reason
is that these image sets lack features which they consider relevant for their study purpose. Consequently, they find
themselves in the necessity of developing or adjusting a collection for their research goal. These ad hoc collections
have two main problems. The first one is the time consuming task of creating such set of segmented, annotated,
and in general, processed images. The second, and probably the most important of them, is the incapacity of
objectively comparing two similar works, since they do not use the exact same image collection. The first point
tends to slow down an investigation, while the second is more related to the impact of a research, which is limited
given the lack of a real standard to measure the degree of importance of the results obtained.
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Figure 4. Sample images from the IAPR-TC12 collection.

Table 1 summarizes some of the features of the image collections used in several papers3 from the year 2007. In
all of the cases, the reference given belongs to the paper where it was used, because in most of them, the creators of
the image sets were not the authors of the papers. This table is intended not only to show what image collections
are being used in current research, but also how they are actually being used. It can be seen that some names
appear more than once along the table; as these collections are used in more than one paper.

From this table we can clearly appreciate that most of the works have used a collection of images about objects.
Subsets from the Caltech collection are mostly used [19, 20], however, even for those papers using this collection
there is not an agreement in the number of labels to consider. None of the collections have been manually seg-
mented and the number of labels considered is small, with exception to Caltech-256 [20] and the events collection
[49]. Note, however, that these collections are designed for specific applications, namely object and event recog-
nition. It should be noted that there is a single collection with meta-data information available [51]. However,
meta-data in such collection consists of the HTML text associated with the images. This form of meta-data is not
reliable, because HTML text is not controlled. The IAPR-TC12 collection already offers reliable meta-data for
each of the images in the collection. Regarding the size of the collection, only in a single reference have been
used more than 20,000 images [44]. The IAPR-TC12 benchmark was created with the goal of providing a realistic
collection of images suitable for a wide number of evaluation purposes; providing images with associated written
information [14]. The collection is composed of around 20, 000 images taken from locations around the world and
comprising a varying cross-section of still natural images. Most of the images come from a travel company that
organizes trips to South-America. The image collection includes pictures of sports, actions, people, animals, cities,
landscapes, and many other topics. In Figure 4 sample images from the IAPR-TC12 collection are shown. Manual
annotations in three languages (English, German, and Spanish) are provided with each image. The annotation is
at image-level and it is composed of an image identifier, a title, a free-text description of the semantic and visual
content of the image, notes with additional information, and a specification of where and when the picture was
taken. Further statistics about the IAPR-TC12 collection can be obtained from [14]. At the moment, the image
collection has been used for evaluating cross-language TBIR methods, CBIR methods, and methods that combine
information from both text and images [16, 17]. It has also been used for object retrieval [54], and for measuring
word association with application to region-level AIA [22]. Currently, it is being used for visual concept detection4.
The IAPR-TC12 collection has several positive properties that have established it as a benchmark. Namely, its ap-
plicability to several tasks related to image retrieval, it is a large size collection, a wide variety of topics is covered
with images, it is composed of realistic images, and it has image-level annotations in three different languages.
Because the ultimate goal of AIA is image retrieval, the IAPR-TC12 collection is well suited for benchmarking AIA
methods. The collection is already annotated at image-level, however, the annotation uses free-text and therefore it
can not be used directly for evaluating image-level AIA. For the visual concept detection task at ImageCLEF2008,
about 1, 800 images were annotated with visual concepts. This is an early effort for using the collection for tasks

3We considered those papers related to AIA, object recognition and image classification published in the proceedings of the 11th IEEE
International Conference on Computer Vision.

4http://www.imageclef.org/2008/vcdt

8



related to AIA. However, only 17 concepts were considered for this task. Given the variety of images this limited
vocabulary can not be used for annotating the entire collection. Furthermore, we must emphasize that annotations
are available at image-level only. Previously, the IAPR-TC12 collection was used for the task of object retrieval,
using the PASCAL VOC-2006 collection for training and the IAPR-TC12 as testing set [54]. However, the num-
ber of objects was 10 and accuracy of most of the methods was poor [54]. The results on this task show that
specialized collections are required for benchmarking different tasks. As it has been stated by the creators of the
IAPR-TC12 collection [14], a benchmark is not supposed to be static, but evolving. Consequently, it is desirable to
continue with the incorporation of additional features to existing benchmarks so they can be useful for evaluating
particular tasks, and more important, useful for evaluating real-world tasks. In this work we justify the need of
an AIA benchmark and propose a methodology for augmenting the IAPR-TC12 collection. Our work consists of
defining an appropriate vocabulary for annotation, developing an adequate concepts hierarchy for annotation and
manually segmenting and annotating the entire collection of images.

The segmented and annotated collection can be used for benchmarking both region-level and image-level AIA
methods. It can be used for the evaluation of closely related tasks, for example for visual concept detection and
object retrieval [54]. It will also benefit the multimedia scientific community by allowing the study of combining
free-text, labels and image features for different multimedia applications. The annotated collection will allow
answering important questions that will benefit the AIA and image retrieval communities (e. g. we could answer
whether ABIR outperforms CBIR, and if AIA is useful for image retrieval, see Section 6). Segmentations and
annotations could be used to categorize the entire collection of images and for obtaining topics and relevance
assessments for AIA and image retrieval. The collection can be used, to some extent, for the evaluation of seg-
mentation algorithms. It will promote the study of the use of spatial relations for AIA and image retrieval. It will
be a very useful resource for the machine learning community by providing a large data set for multi-class clas-
sification. In this respect, the collection can be used as a resource for training learning algorithms; the collection
has many classes (allowing the study of classification with a large number of classes) and it is a very challenging
domain (see Section 5.1); regions in images are visually and semantically related, allowing the study of structured
prediction methods (one of the current research directions in machine learning [56, 57]); the annotation-hierarchy
can be used for studying hierarchical classification and classification with a varying number of classes; finally, it
will allow the study of the classification problem in highly imbalanced data sets (see Section 6). The study of the
questions and problems mentioned in this section can give rise to a specialized track in the ImageCLEF forum or
even to a machine learning challenge (see Section 6).

4 The Annotation of the IAPR-TC12 Benchmark

This section describes the methodology adopted for extending the IAPR-TC12 collection. The extension con-
sists of manually segmenting and annotating the entire collection. This is one of the contributions of the paper,
because it reflects to what extent the benchmark could be reliable for evaluating AIA. The key feature of the
methodology is a hierarchical organization of the vocabulary that proved to be very helpful for annotation. This
hierarchy is also used by an ad-hoc AIA evaluation measure proposed in this work (described in Section 5). Statis-
tics on the segmentation and annotation of the IAPR-TC 12 collection are also presented. This information gives
evidence that the methodology we are following is well suited for the considered collection.

We have segmented and annotated half of the entire collection. The products derived from this work, namely:
segmentation masks, annotations, visual features and spatial relations are publicly available for research purposes
from the following website http://ccc.inaoep.mx/˜tia/saiapr.
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4.1 Vocabulary

The vocabulary plays a key role in the annotation process because it has to cover most of the concepts that
we may find in the collection of images. At the same time, the vocabulary should not be too large because
AIA performance is closely related to the number of labels considered (see Section 5.1). Diverse annotation
vocabularies have been considered in different works. Some of them are specific for the type of the images in the
collection. In this work we consider a study carried out by Hanbury [55]. There, a list of around 494 labels is
obtained by analyzing several AIA benchmark collections. We took this word list (H-list) as base and adapted it to
the IAPR-TC12 collection.

Using the H-list we created our ad-hoc vocabulary as follows. First, we extracted the nouns from the manual
annotations of the IAPR-TC12 collection (A-list). We did the same for the textual description of topics for Image-
CLEF 2006 and 2007 (T-list). Using these three lists (H, A, and T) we obtained a candidate list (C-list) of labels.
The C-list was obtained by considering the words appearing in at least two lists. The C-list was then manually
filtered by considering the following aspects: i) The type of images in the collection, we manually analyzed a
large number of images, randomly chosen, and eliminated words that were not present in the images (e. g. ’binoc-
ulars’,’office’,’printer’,’sunflower’). ii) We considered the frequency of occurrence of the words in the IAPR-TC12
collection, highly frequent words were kept (e. g. ’sky’, ’mountain’, ’wall’, ’table’); while useless highly-frequent
words were not considered (e. g. ’background’, ’blue’, ’black’). Finally, words in the H-list that were initially
dropped from the C-list (e. g. ’herd’) and words identified by the authors (e. g. ’sky-red’), that did not appear
in any of the three lists, were incorporated into the final list. This last process was iterated several times until the
authors totally agreed on the final list. The resulting list of words (232) is shown in Table 2.

4.2 Conceptual Hierarchy

When annotating the IAPR-TC12 benchmark the need of a hierarchical organization for the vocabulary arose,
this is because a structured annotation was one of the main goals of this work. With this end in mind a hierarchical
arrangement of the vocabulary was proposed. The hierarchy was manually defined by the authors after carefully
analyzing the images, the annotation vocabulary and the vocabulary of manual annotations. The annotation vocab-
ulary was organized mostly using is-a relations between labels; although, relations like part-of and sort-of were
also included. One should note that the hierarchy was defined by thinking on its usefulness for annotation and
the representation of images in the IAPR-TC12 collection rather than considering the semantics of labels. The
purpose of this structure is to facilitate the annotation process by allowing the annotator to make the correct deci-
sion of which is the more adequate label for a given region. Reducing as much as possible, the ambiguities when
annotating two not so visually similar regions with the same label, or on the other hand, to help distinguishing
two visually similar regions, but different in the concept. The hierarchical organization of concepts is also helpful
for the soft evaluation of AIA methods (see Section 5). In this respect, we propose an ad-hoc evaluation measure,
based on the ontology, for the annotated IAPR-TC12 collection. This hierarchy could also be useful for the orga-
nization and categorization of the IAPR-TC12 benchmark. This would be very helpful for the creation of topics
and relevance assessments for multimedia tasks using the IAPR-TC12 collection.

In Section 4.1, we defined a vocabulary of 232 words. However, the final list of words in the ontology consisted
of 275 words. The reason of this is that, when building the ontology, we found ourselves in the need of adding
new words (most of them, intermediate words, and just in some cases, leaves), in order to have a better structure
in the ontology tree, and also trying to make this ontology as coherent and formal as possible. The list of words
added is shown in Table 3. Some other words were, on the other hand, discarded or changed in the same process;
the list of such words, and the word or words used to replace them are in Table 4, including a brief explanation of
why they were changed.

A general view of the proposed ontology may be seen in Figure 5. The levels in the ontology are shown in
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airplane animal ant antelope apple astronaut arctic baby
ball balloon bear beaver bed beetle bench bicycle
bird boat bobcat book bottle branch bridge building
bull bus bush butterfly cactus camel camera can
canine cannon car caribou castle cat caterpillar cello
chair cheetah child child-boy child-girl chimney church church-

interior
city clock cloth cloud column construction coral cougar
couple-
person

cow coyote crab crocodile cup deer desk

dish diver dog dolphin door dragonfly eagle elephant
elk fabric face feline fence field fire firework
fish flag flamingo floor-

carpet
floor-
court-
tennis

floor-other floor-wood flower

flowerbed food forest fountain fowl fox fruit furniture-
other

furniture-
wood

giraffe glacier glass goat grapes grass ground

group-
persons

guitar hand hat hawk head hedgehog helicopter

herd highway hill horn horse house hut ice
iguana insect island jaguar lighthouse lion lizard llama
lobster log lynx mammal man monument motorcycle mountain
mushroom musical-

instrument
nest ocean ocean-

animal
octopus orange owl

painting palm panda paper penguin person piano pigeon
plant polar-bear pot primate public-sign pyramid rabbit rafting
railroad reflection reptile rhinoceros river road rock rodent
roof rooster ruin sand saxophone scorpion screen seahorse
seal semaphore shadow sheep shell ship shore sidewalk
sky-blue sky-light sky-night sky-red

(sun-
set/dusk)

smoke snake snow space-
shuttle

squirrel stairs starfish statue steam strawberry street sun
surfboard swimming-

pool
table telephone tiger tire tower toy

train trash tree trombone trumpet trunk turtle umbrella
vegetable vegetation vehicle viola violin volcano wall water
waterfall wave whale window wolf woman wood zebra

Table 2. Set of words selected with the methodology described in Section 4.1.
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aerostatic-
balloon

air-vehicles ancient-
building

ape beach

boat-rafting cabin canine construction-
other

curtain

desert edifice flock-of-birds floor furniture
generic-
objects

ground-
vehicles

handcraft humans jewelry

kangaroo kitchen-pot koala lake lamp
landscape-
nature

leaf leopard mammal-
other

man-made

man-made-
other

mandril marsupial monkey mural-
carving

non-wooden-
furniture

object (not to
be instanti-
ated)

other-entity pagoda parrot

person-
related-
objects

plant-pot rafter ruin-
archaeological

sand-beach

sand-desert school-of-
fish

sky trees vehicles-
with-tires

water-
reflection

water-
vehicles

wooden-
furniture

Table 3. Set of words added to the vocabulary when the ontology was being built.

different colors in order to facilitate their visualization5.

Figure 5. General view of the ontology created for annotating the IAPR-TC12 collection.

The root of the proposed ontology is the word object and from this root, four main categories are derived:

1. Animals. Every animal-related word in the ontology is contained in this category. Groups of animals are
also instantiable, like herd (for mammals), flock (for birds), or school (for fish). These group labels are
to be used when more than one animal belonging to the same group are found together. Animals are also
subdivided into 5 subcategories, namely:

(a) Mammal

(b) Reptile

(c) Bird

(d) Ocean animal

(e) Insect

This branch is detailed in Figure 6.

2. Food. Any edible object is placed here. More detail on this branch may be found in Figure 7.
5The complete ontology is available for visualization at http://ccc.inaoep.mx/∼tia/ann ont.htm
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Figure 6. Detailed view of the branch animal in the ontology.

Figure 7. Detailed view of the branch food in the ontology.
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Original
word

substitute
word(s)

Explanation

field grass, vegeta-
tion

Field was considered too ambiguous

forest trees The only part of the forest that we considered
could be instantiated was actually the trees

furniture-
wood

wooden-
furniture

More appropiate

pot kitchen-pot,
plant-pot

Divided into two words to avoid ambiguities

rafting rafter Rafting is more an action than an object (rafters,
because of their indumentary were considered of
interest)

reflection water-
reflection

The only kind of reflection considered of relevance
was water reflection

ruin ruin-
archaeological

More explicit

sand sand-beach,
sand-desert

Also divided in order to avoid ambiguities

shadow —– We considered shadows of no use for annotation
or retrieval

Table 4. Set of words discarded or changed in the vocabulary when the ontology was being built.

3. Humans. Persons are put here. Groups and couples of persons are included as well. Given the large amount
of humans in the dataset, body parts, like head, face and hand are considered. Particular cases taking into
account age and gender are referred as subcategories of humans. Special cases are astronaut, diver, and
rafter, given the special indumentary which might cause confusion if they are labeled together with the rest
of the humans. Figure 8 details how this branch is composed.

Figure 8. Detailed view of the branch humans in the ontology.

4. Man-made. Every object, for which its creation involved humans, is considered in this category. This is a
general category whose subcategories actually determine the kind of object. City is another special case,
where a group of elements together are taken as the representation, in this case, of a urban settlement. The
subcategories of man-made are:

(a) Construction. Any edification built by man.

(b) Fabric. Fabric-made objects. Namely: cloth (in general), curtains, and flags.
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(c) Floor. Surfaces built by men, including wooden floors, carpets, tennis-courts, or floors made of other
material.

(d) Furniture. Either functional or decorative furniture.

(e) Handcraft. Objects which are hand-made, but from an artistic point of view.

(f) Musical-instrument. Different kinds of musical instruments.

(g) Vehicle. Transportations used for carrying humans or objects. These are divided, according to the way
they move as:

i. Air-vehicles
ii. Ground-vehicles

iii. Water-vehicles

(h) Man-made-other. Other man-made objects which are not found in the other classifications.

Figure 9 gives more detail regarding this branch.

Figure 9. Detailed view of the branch man-made in the ontology.

5. Nature. Elements existing in nature (excluding animals and humans) can be found in this category. This
also covers more general concepts such as landscapes. A more detailed view of this branch may be observed
in Figure 10.

6. Other. Other labels which could not be classified in the other categories, but that were considered relevant
at the moment of creating the vocabulary, were included in this category. Examples of these are fire, smoke,
and steam. Figure 11 shows the contents of this branch.

Some labels in the ontology, corresponding to composed words, are named in a way that we considered would also
allow for a faster search of the concept when annotating (consequently, some of these labels might not seem quite
correct from a syntactic point of view). For example, to make reference to blue sky, beach sand, and archaeological
ruin we use the labels sky-blue, sand-beach and ruin-archaeological respectively. In some other cases we make
the label a composed word to emphasize the class we are refering to, and to avoid ambiguities; an example of this
is floor, and its descending elements floor-carpet, floor-wood, floor-tennis-court, and floor-other, (note that the
simple word other gives not enough information by itself). Finally, some labels are named using two names (in
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Figure 10. Detailed view of the branch nature in the ontology.

Figure 11. Contents of the branch other in the ontology.
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a composed word fashion), such as fowl-hen, bobcat-wildcat, cougar-puma, when we considered there was more
than one common name for them.

In a strict sense, the structure here introduced is not a real ontology, given the relaxations present in the tree,
where some of the branches are considerably more detailed than others (some cases are not detailed at all); and
where also some of the labels are not always strictly positioned in the structure according to is-a relations. Al-
though the ontology was built mainly based on is-a relations, other relations were also included when they were
considered relevant; these relations are part-of and the concept group-of.

The relaxations in the structure, refer to the level of detail, the kind of relations considered, and also, the
repetition of some terms in two or more branches of the ontology, in cases where a label can actually be thought
of in more than one way. It is important to remark that there is a reason for these relaxations, since this pseudo-
ontology is more annotation-oriented than semantic-oriented.

There are similar works based on hierarchical models for vocabulary and annotations, such as the one presented
by Yao et al. [32], with what they call a tree list of terms; or the visual concept detection task at ImageCLEF
2008, where the labels must be assigned according to a 17-class hierarchy. It is important to mention that these
two works we refer to, did not exist by the time our own project started, so our ontology was not based on them.
Nevertheless, these works also show a certain tendency to structure labels in a hierarchical, and more structured
way than a simple list of apparently unrelated words. This is probably the most important similarity between
these works and our proposed ontology, since these independent ideas produced similar structured annotation
hierarchies.

The first case shows an extremely detailed structure, where we may see that a big number of its elements have
an equivalent term in our ontology (even classes like man-made, mammal, and vehicle, appear in a similar way).
However, being it intended to be a multipurpose database (scene and activity classification, aerial images, popular
and general objects, and text, to name a few of its subsets), several labels in this structure will not be suitable at
all for certain images. This considerably reduces the actual number of possible labels for images of the type of the
ones found in the IAPR-TC12, reducing the level of detail as well. As an example, while in their classification all
of the mammals are put at the same level, in our ontology mammal is a four-level branch. In the the second case,
most of the elements they defined have some kind of equivalent term in our ontology. However, there is also an
important difference in the level of detail, given the fact that their hierarchy consists of three levels at most (though
almost all of their labels are in the second level). If the structure is too general, this imposes certain restrictions
and forces in some cases to group not so similar regions under the same label, which may affect the annotation
ability.

4.3 Segmentation and Annotation Guidelines

Segmenting and annotating an image are tasks which can be performed by completely automatic methods,
by human-assisted methods, or even manually. When humans participate in these tasks, they become mostly
subjective, since two different persons may segment the same image in completely different ways. This means
that a region that seems important to a person, might be irrelevant to another, and the same happens for the shape
and size of the region, which will vary from person to person. Even the same individual will probably have
different segmentations if they segment the same image more than once at different times.

Because the process of segmenting and annotating images is so hardly standardized, we considered as one of our
first priorities to perform this task by a reduced group of persons (in our particular case, the size of the designated
group was of 4 persons), so the segmentations and annotations were as consistent as possible. For the same reason,
a set of segmentation and annotation guidelines were defined to reduce ambiguities and confusion (it is assumed
that the annotator knows the full list of words in advance and that they are familiarized with the segmentation and
annotation tool).

The set of guidelines for segmentation is:
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Figure 12. Some images from the IAPR-TC12 collection, used in this case to exemplify the segmentation rules defined. Images are shown
manually segmented in order to facilitate distinguishing the regions that are mentioned.

1. Regarding the size of the region to segment, the annotator must avoid segmenting too small regions (with
respect to the image size). The annotator must keep in mind that this size is mostly determined by the type
of this region. Some objects are expected to look big with respect to the image, while others, even in perfect
conditions will most of the times look relatively small with respect to the total image size. This makes
this size condition mostly subjective, but nevertheless, necessary, in order to obtain only useful annotated
regions.

2. With respect to the object itself, the annotator must avoid segmenting regions where the object is incomplete.
This means that at least a third of the object must be visible in the image for the corresponding region to be
considered useful.

3. About the contents of the segmented regions, the annotator must consider that this region should contain
information from just one object. This means that a segment should not contain parts from more than one
entity.

4. Regarding the shape of the object to be segmented (when such shape is relevant), the annotator is advised to
try to keep it; otherwise, if the annotator considers the shape of the object to be of no importance, then they
may relax the segmentation in a way that it can be performed faster and easier.

5. Likewise, also regarding the shape of the object, when it is considered to be irrelevant, the annotator may
divide the object in more than one region if they believe that creating those smaller regions is easier than
segmenting the original single one.

6. With respect to the image quality, the annotator must take into account that several images were captured
under bad conditions, and in such cases lots of shadows or excessive illumination make it difficult to segment
their regions. The recommendation is to avoid such areas and just segment what can be seen without much
difficulty by the annotator.

7. About the presence of groups in images, the annotator must take into account if the label related to that group
is present in the ontology; if that is the case, they must segment such group as a unit (with its corresponding
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group label), and as far as possible, also segment its units individually (with their corresponding individual
label as well). The purpose of group labels is mainly helping in cases where a cluttered scene makes difficult
the segmentation of each and every individual in a group.

As an example of rule 1, Figure 12 (a), shows objects like telephones and lamps, which are often small with
respect to the image, in contrast with objects like curtains and beds, which are most of the times of a considerable
size also with respect to the image. Figure 12 (b) shows an example of rule 2; here, it is possible to appreciate
that although there is a part of what seems to be a ship or a boat, it must not be segmented. The main problem
with this kind of objects is the difficulty to be correctly identified, and since a human would certainly have trouble
identifying it, we must expect its features would not be of any help either. For rule 3, in Figure 12 (c), we may
see that if we segmented the group of persons along with the bicycles, we would get wrong feature measurements
(because more than one kind of objects would be represented in a single region), and this must be avoided since
this tends to cause confusion when regions are automatically classified. An example of rule 4 may be found in
Figure 12 (d), where elements such as the sky or the ocean may be segmented in a relaxed way, but elements like
the boat must be segmented more carefully, since its shape may help defining a pattern to better represent this class
of objects. An example of rule 5 is in Figure 12 (e), where vegetation is segmented using more than one single
region. In the case of rule 6, for example, Figure 12 (f) shows an example of how excessive shadows make it
difficult to distinguish relevant objects in the image. Figure 12 (g) exemplifies rule 8; here the group of persons is
segmented as a single object, and only the most distinguishable persons in the image are individually segmented.

Guidelines for annotation:

1. In reference to the most adequate label to use, the annotator should look for the exact label they believe the
region belongs to by searching the ontology top-down, ie., going from the most general labels to the most
particular ones. Whenever a suitable label is not found they must resort to the label in the upper level to
assign it to the region of interest. This means that a word must be used only when the annotator is completely
sure of its meaning and that it really fits the region of interest, otherwise, a more general label should be
used. However, the annotator is advised to try to not overuse general-purpose labels.

2. With respect to the branch other, in several cases, when a correct label is not found under the category of
interest, there is a chance of finding an adequate one by navigating the other subbranch (though in some
cases it does not exist, and this means that the annotator must resort to an upper level).

An example of rule 1 is shown in Figure 13 (a); in this case, a parrot appears in the image, so we must find
the corresponding label in the ontology, in case it did not exist, we should use the closest label in meaning (which
in this case is bird). In the case of rule 2, for example, for labeling the region with the horse in Figure 13 (b)
if we look for the label horse in the branch mammal, we will find that we can actually locate such label under
mammal-other.

4.4 Segmentation and Annotation Process

For the segmentation and annotation of the IAPR-TC12 collection we developed an interactive software tool in
MatlabTM (called ISATOOL, for Interactive Segmentation and Annotation Tool). In ISATOOL the segmentation-
annotation process is as follows. First an image is loaded and the user starts the segmentation process by marking
points in the image. Such points should surround objects present in the image. Instead of using straight lines for
joining the marked points (just like it is done with the LabelMe project [31]) we considered splines in this work.
This is because most objects have an irregular shape and using straight lines would require the user to mark more
points. The number of images will make impractical such an approach. As we can see, in Figure 14, accurate
segmentations can be obtained with this approach.
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Figure 13. Some images from the IAPR-TC12 collection, used in this case to exemplify the annotation rules defined. Images are also shown
manually segmented in order to facilitate distinguishing the regions that are mentioned.

The user is asked to segment the objects in the image (see Section 4.3 for a description of which objects to
segment). Once an object is segmented the interface asks the user if they are satisfied with the segmentation of the
object. If they are not satisfied, the user can restart the segmentation process until they are satisfied. Otherwise,
the user is required to specify the label from the vocabulary that better describes the object.

For annotation, the user pushes a button and the hierarchy described in Section 4.2 is displayed. The user
must navigate through the hierarchy and eventually select the word that better describes the identity of the object,
see Section 4.3. This feature of ISATOOL obligates the annotator to select the label that better describes the
object according to our hierarchy. Opposed to selecting the label that better describes the object according to the
annotators knowledge [31, 29, 30, 10]; or selecting a word that is related to the object and appears first in a list of
words, even when it is not the best label. The user is again asked to confirm if they are satisfied with the annotation
of the current region. The segmentation-annotation process is repeated for each object of considerable size within
the image.

Once all of the objects have been segmented in the current image the user pushes a button for extracting informa-
tion from the current image and loading the next image to segment. Such information consists of the segmentation
masks and visual features extracted from each region. We store two different segmentation masks per image:
the individual and the global segmentation masks. In individual masks we store a single segmentation mask for
each of the segmented objects. In the global segmentation mask we generate a single segmentation mask for each
image. This is done by combining the individual segmentation masks of the objects in the same image. Regions
are collocated in this global mask by considering their area. This way, large regions are put first (on the back) and
smaller regions are put later (on the front). Information of spatial relations between regions is also extracted at this
time (see Section 4.5).

The following features were extracted from each region: area, boundary/area, width and height of the region,
average and standard deviation in x and y, convexity, average, standard deviation and skewness in both color
spaces RGB and CIE-Lab, for a total of 27 features. We selected these features because these were considered
in previous AIA works [10, 21, 22, 23]. However, each user can extract their own set of features since we will
provide segmentation masks, and the images of the collection can be obtained as well [14]. As future work we
will consider a significantly larger number of features and will perform feature selection for region-level AIA and
ABIR.

4.5 Spatial Relations

Among the potentially useful features we can extract from images we find spatial relations. These features have
proved to be very useful for region-level AIA [10, 21, 22, 67, 68]. Spatial relations are helpful to know the relative
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Figure 14. Sample images from the IAPR-TC12 collection segmented and annotated as described in Section 4.
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position of an object with respect to other objects used as reference in the same scene. Based on the research
shown in [21] we extract as additional image features, seven different spatial relations. They are divided into three
groups which are:

• Topological relations. Theoretically there are eight possible topological relations between two surfaces in
a 2D space, and these are: disjoint, contains, inside, touching, covers, covered by, overlapped, and equal.
In practice, however, only the first four of these relations can be verified between regions in an image. We
simplify these relations to two, and then for every pair of regions, we consider they are either adjacent or
disjoint.

• X-relations. X-relations determine how a region is positioned with respect to another, regarding the X axis
of the image. One region is beside or X-aligned to any other region.

• Y-relations. Same as X-relations, but regarding the Y axis of the image. One region is above, below or
Y-aligned to another region.

Adjacent is a simplification of the possible topological relations where there is some level of contact between
the two images (contains, inside, and touching), while X an Y relations are a subclassification of order relations.
These order relations are computed with respect to the center of mass of each region. X-alignment is determined
considering a vertical stripe with a proportional width with respect to the image width (and centered at the center of
mass of the object of interest); if the center of mass of the region of reference falls into this stripe, it is considered
to be X-aligned. Similar procedure is followed to determine Y-alignment.

The spatial relations considered here, are computed in a binary fashion, i.e., for every pair of regions (Ri, Rj)
in an image, three spatial relations are computed (one per group) between Ri and Rj and three more between Rj

and Ri. Spatial relations are directly computed from the segmentation masks.
We strongly believe that the computed relations are of interest for future research in the use of spatial informa-

tion among regions in images. It has been proved that the use of context can be helpful in the object detection-
recognition [63] and AIA tasks [10, 21, 22, 67, 68]; other works using spatial relations for annotation or retrieval
are [65, 66]. For object recognition there are several collections that offer spatial information [30, 31, 32]. How-
ever, the only collection that provides spatial information for region-level AIA is that of Carbonetto et al. [10].
Despite it has been very useful [10, 21, 22], that collection is a subset of the Corel collection and has only used
three spatial relations6 (up, below and next-to). Further, this collection has other limitations described in Section
3. When we complete the segmentation and annotation of the IAPR-TC12 collection we will provide seven spatial
relations for 20, 000 images. This information will support research in the use of spatial relations for region-level
AIA, and ABIR.

4.6 Statistics of the Collection

At the moment, more than 10,000 images out of the 20,000 have been segmented and annotated; the entire
collection will be available at the end of 2008. Currently, 47,153 regions compose the segmented collection, for
which 239 labels have been used; which represents 86% of the total of the vocabulary. In average 4.71 regions
have been segmented per image. The area of each region occupies 15.69% of the image in average. As it is usual in
AIA collections, there are some labels that have been used for a considerable number of regions while others have
been very sparsely used. Figure 15 plots the number of regions annotated for the 50 more frequent labels. The
ten more common labels are ‘sky-blue’ (3260), ‘man’, (2349), ‘cloud’ (1709), ‘group-persons’ (1695), ‘ground’
(1648), ‘grass’ (1527), ‘woman’ (1513), ‘rock’ (1447), ‘vegetation’ (1418), and ‘trees’ (1320). We can clearly

6These spatial relations have also been extracted from images in order to complement the benchmark; they will be distributed with the
collection. For this task and for that of feature extraction we used the code provided by Peter Carbonetto http://www.ubc.edu.ca/∼pcarbo/
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Figure 15. Histogram that shows the the number of regions annotated with each label for the top-50 more common labels.

appreciate that the most common labels agree with the type of images present in the collection (i.e. pictures of
people in vacation trips [14]). There are 14, 85 and 119 labels that have been used in more than 1,000, 100 and 50
regions respectively.

A total of 218 leaves in the hierarchy have been used for annotation; Table 5 shows the distribution of anno-
tations for the nodes in the first level of the hierarchy. There are more than 21,000 regions annotated with labels
below the ‘Landscape’ node; it has 46 descendants of which 33 are leaves. More than 15,000 regions have been
annotated with labels from the ‘Man-made’ node; which is also a large number of regions, however, note that the
number of descendants for ‘Man-made’ is of 113 nodes, from which 85 are leaves. ‘Humans’ is a node with many
regions as well, however, its number of descendants is small when compared to the other nodes at the same level.
The normalized frequency (third row in Table 5) shows the average number of labels assigned to each descendant
in the considered nodes.We can see that the branch ‘Humans’ is the one with more annotations per descendant,
‘Landscape’ and ‘Man-made’ come next. This fact, again, reflects the type of images in the collection: in most of
the images appear ‘Humans’ since most of the images were taken by/to tourists; most of the pictures were taken in
South-American natural places,therefore, there are many images that contain labels from the ‘landscape-nature’
branch. Regarding spatial relations, the normalized frequency of spatial relations extracted is described in Table
6. We can see that the most frequent relations are beside and disjoint, with 25.93% and 23.62%, respectively. Note
that beside is a generalization of left and right relations, and this is reflected in its frequency. X-alignment and
Y-alignment are low frequent relations, with 7.4% and 7.16%, respectively. Finally, the proportions obtained by
above and below reflect their symmetry property, both with 13.09%

5 An Evaluation Measure for the Benchmark

As introduced in Section 2.3, most region-level AIA methods have been evaluated by their ability of assigning
labels at image-level; standard measures from information retrieval have been used for measuring the image-
level annotation performance of these region-level AIA methods. We have seen (Section 2.3), however, that this
evaluation methodology can not provide a reliable estimate of correspondence accuracy. This approach has been
adopted by most researchers because of the lack of a suitable collection for benchmarking region-level AIA.
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Label ’Animal’ ’Humans’ ’Food’ ’Man-made’ ’Landscape’ ’Other’
Frequency 1,002 9,214 337 15,822 21,802 300
Norm. Freq. 16.43 614.27 48.14 138.79 463.87 50
Descendants 60 14 6 113 46 5
Leaves 47 12 5 85 33 5

Table 5. Distribution of annotations for labels in and below the nodes in the first level of the hierarchy described in Section 4.2. Frequency shows
the number of regions annotated with labels in or below each node. Norm. Freq shows the frequency amortized by the number of descendants of
each node.

ID Adjacent Disjoint Beside X-alig Above Below Y-alig
No. Ex 77,306 187,904 206,308 58,902 104,124 104,124 56,962
Norm. Freq. 9.72% 23.62% 25.93% 7.4% 13.09% 13.09% 7.16%

Table 6. Frequency of spatial relations among regions in the extended IAPR-TC12 collection.

Evidently, with the annotated IAPR-TC12 collection correspondence accuracy of region-level AIA methods can
be evaluated in a reliable way by using common classification-performance measures, widely used for evaluating
machine learning methods (e. g. area under the ROC curve, balanced error rate, percentage of misclassifications,
squared root error, etcetera). These measures can effectively assess the correspondence performance of annotation
methods. However, they can be too hard for the current state of the art in region-level AIA. Consider, for example,
the case in which the correct label for a given region is ’trees’ (plural) and the model under study classifies such a
region as ’tree’ (singular), see Figure 14 top leftmost image. In this situation a classification-performance measure
would consider the assignment as totally incorrect, despite this prediction is partially correct.

In order to give partial credit to those annotations, we propose a new7 evaluation measure for region-level AIA
in the annotated IAPR-TC12 collection. The proposed measure is quite simple, yet it can provide reliable soft
evaluations of correspondence performance. It is based on the annotation hierarchy introduced in Section 4.2, and
it is described in Equation (1).

eontology(t, p) = 1− [1in−path(t,p) ×
|fdepth(t)− fdepth(p)|

max(fdepth(t), fdepth(p))
] (1)

Where 1in−path(t,p) is an indicator function that takes the unit value when both, the predicted label p and the
true one t, are in the same path of the annotation ontology. fdepth(x) is the depth of label x within the hierarchy.
Intuitively, eontology(t, p) assigns an error value to a label, predicted by a model, proportional to its distance (within
the hierarchy) with respect to the ground truth label. The distance should be properly normalized in order to ensure
that labels with different depths in the hierarchy are equally evaluated. A predicted annotation will be evaluated
as partially good if and only if it appears in the same branch, in the hierarchy, than the correct label. Note that this
measure only applies when the true and predicted labels are different, otherwise its value is zero.

For illustration, consider the path of the labels for the above example, i. e. ’tree’ is the predicted label and ’trees’
is the correct one. The respective paths in our ontology are: object→landscape-nature→vegetation→trees→tree
and object→landscape-nature→vegetation→trees (see Figure 10). Clearly, the predicted label, ’tree’, is a child
(i. e. a more specific label) of the correct one, ’trees’. For this case we would assign a prediction error of
eontology(trees, tree) = 0.25 by using Equation (1). If we use a standard classification-performance measure (e. g. ehard =
1t 6=p) the error would be of 1. As we can see this measure can provide a reliable estimate of correspondence performance for
region-level AIA methods. This will be evident in the next Section, where we compare standard classification algorithms by
using the evaluation measure proposed in this section.

7This measure is not supposed to replace a classification-performance measure for evaluating region-level AIA. Instead, it is supposed
to provide an alternative or/and complementary evaluation performance, so region-level methods could be evaluated by a combination of a
classical classification-performance measure and the one proposed here.
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Classifier Description Parameters
Zarbi A simple linear classifier -
Naive Naive Bayes classifier -
Neural Feedforward Neural Network Units=10, Shrinkage=0.1, Epochs=50, Bal-

anced=1
SVC Support Vector Classifier Coef0=0, Kernel=Polynomial, Degree=1, Shrink-

age=0.001
Kridge Kernel ridge regression Coef0=0, Kernel=Polynomial, Degree=1, Shrink-

age=0.001
RF Random Forest Depth=1, Shrinkage=0.3, Units=100

Table 7. Classifiers from the CLOP toolbox considered in the experiments. The parameters of the classifiers are shown as well, see [62] for more
details.

ID A B C D E F G H
No.
Classes

2 3 4 5 10 25 50 100

No. Ex-
amples

3168 4408 5602 6784 11186 18381 24071 28955

Table 8. Subsets considered in the experiments with distribution of classes and the total number of examples considered in each subset.

One should note that this measure is well suited for evaluating region-level AIA methods that have as ultimate goal
supporting image retrieval. This is because methods that most of the times do not assign the correct label, but assign a word
that is highly related to the correct one, will be evaluated high. The labels assigned by this sort of methods will be still very
useful because for image retrieval (and information retrieval en general) words related to the correct annotation of the image
can be considered an expansion of the annotation. For example, if the correct labels for an image are ’vegetation’, ’bush’,
’sky’, ’vegetation’, ’sky’ and an AIA method assigns the following labels, ’leaf’, ’vegetation’, ’sky-blue’, ’leaf’, ’sky-blue’
(see first column in Table 9). Then, it is very likely that this image will be equally relevant/irrelevant to a query, independently
of annotation used (e. g. both annotations describe and image showing vegetation and sky).

5.1 Benchmarking AIA

In this section we show annotation results on region-level AIA using a subset of the annotated collection. The goal of these
experiments is to illustrate how the annotated collection can be used for region-level AIA (and multi-class classification) and
to compare the soft evaluation measure to a hard one. We face the problem of AIA as one of multi-class classification with
as many classes as labels are in our vocabulary. We considered state of the art classifiers over a subset of the total number of
annotated regions. The classifiers we considered with their respective parameters are described in Table 7. These classifiers
are included in the CLOP8 machine learning toolbox [62].

We considered different subsets according to the frequency of annotated regions per class. A description of the data subsets
we considered and the distribution of classes and examples are shown in Table 8. For each data subset the available data were
split into, disjoint, training (70%) and testing (30%) sets randomly. In each experiment we trained k−classifiers under the
one-versus-all (OVA) formulation (with k as the number of classes). Under this schema one binary classifier is trained for
each label. The kth−classifier is trained taken as positive those examples from class k and the rest as negative. Despite OVA
being very simple, it has proved to be competitive to more sophisticated and complex approaches [58, 59]. Furthermore, OVA
is the widely used approach for supervised AIA [12, 21, 22, 23, 24]. One of the main challenges in OVA classification is that
of choosing a way to combine the outputs of binary classifiers so that error on unseen data is minimized [58, 59]. Since the
goal of the experiments is only illustration we adopted the simplest strategy for merging outputs of the individual classifiers.
When more than one classifier is triggered we preferred the prediction of the classifier with lower cross-validation error [58].
When no classifier is triggered for a test instance, we assign it the majority class.

For the evaluation of the above classifiers we considered the widely used measure for assessing the performance of classi-
fiers: the percentage of correct classifications (ehard). We compare this hard evaluation measure to that described in Equation

8http://clopinet.com/CLOP/
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Figure 16. Percentage of correct annotations for the classifiers and data sets described in Tables 7 and 8. Left, results obtained with the hard
evaluation measure; right, results obtained with the evaluation measure proposed in this paper. Baseline (the lower line in each plot) is the accuracy
we would get by randomly (uniformly) selecting labels.

Ground-
truth

Predicted Error Ground-
truth

Predicted Error Ground-
truth

Predicted Error

vegetation leaf 0.5 tree vegetation 0.5 plant vegetation 0.33
bush vegetation 0.5 trees vegetation 0.33 tree vegetation 0.5
sky sky-blue 0.33 trees vegetation 0.33 tree vegetation 0.5
vegetation leaf 0.5 sky-light sky 0.33 palm vegetation 0.5
sky sky-blue 0.33 sky sky-blue 0.33 trees vegetation 0.33
tree vegetation 0.5 palm vegetation 0.5 sky sky-blue 0.33
sky sky-blue 0.33 vegetation leaf 0.5 water waterfall 0.33
vegetation leaf 0.5 bush vegetation 0.5 branch vegetation 0.5
sky sky-blue 0.33 vegetation leaf 0.5 trees vegetation 0.33
road highway 0.25 tree vegetation 0.5 vegetation leaf 0.5

Table 9. Analysis of some labels evaluated as non-erroneous with the eontology measure and as wrong with the hard evaluation measure. Ground-
truth shows the correct label for the region, predicted stands for the label predicted by the model and error represents the eontology value for the
label predicted.

(1) (we say a predicted annotation is correct if it obtains eontology < 1). In Figure 16 we plot the average ehard (left) and
eontology (right) for each class and for each classifier we considered. We can clearly appreciate that both measures decrease
similarly as the number of labels considered increases. The plot illustrates the fact that the hard evaluation measure is a
special case of our ontology-based measure. Both plots obtain very similar accuracy values for the data sets A-E, (i.e. 5
classes at most). For the data sets F-H there is a small difference in the considered evaluation measures. This reflects how
the soft measure is indeed less rigid for the evaluation of the classifiers.

In Table 9 we analyze the results of a random run for 100 classes (it is expected that the performance measure works
better for a larger number of labels). We consider a subset (randomly selected) of the labels assigned to test regions that were
classified as wrong with the hard measure and as correct by using the measure we propose. In the first column we show the
ground truth label and in the second one we show the label predicted by the algorithm, the error value of each of these labels
is also shown. We can clearly appreciate that the ontology-based measure effectively assess the performance of this classifier.
All of the labels considered as partially good are indeed closely related to the correct label. It is clear that if a method obtains
good performance under this measure it will be very useful for ABIR.

6 Applications of the annotated IAPR-TC12 Benchmark

The IAPR-TC12 collection is an established image retrieval benchmark that has been used for the evaluation of a wide
variety of CBIR and TBIR methods [16, 17]. Further, it has been used for the evaluation (and for the study) of methods
that combine visual and textual information [16, 17]. The work proposed in this paper will complement the collection by
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allowing the effective evaluation of several other tasks related to image retrieval. The number of applications for the IAPR-
TC12 collection will be increased as well with our work.

So far we have introduced the annotated IAPR-TC12 collection and presented statistics about the segmentation-annotation
process. In this section we extend the ideas introduced in previous sections, outlining possible applications and important
questions that could be answered, to some extend, by using the fully segmented and annotated IAPR-TC12 benchmark.
Applications in the following areas, for the annotated collection, have been identified.

• Image annotation

• Image retrieval

• Image segmentation

• Machine learning

6.1 Image Annotation

The main subject of this research is on the evaluation of region-level AIA methods. However, image-level AIA methods
could be evaluated directly with the annotated collection as well. Because we can always create an image-level annotation
from the region-level annotations for regions within the same image. Image-level AIA can not be evaluated with the current
annotations of the images in the IAPR-TC12 collection. This is because these annotations were provided from the annotators
as free-text. Furthermore, the size of the vocabulary from the IAPR-TC12 collection is in the order of 10, 000 words for any
language when stop words are removed and stemming is applied.

Currently, the ImageCLEF2008 is running a visual concept detection track. This task can be considered as an special
case of image-level AIA. The participants are provided with 1, 800 weakly labeled images to train their model, 17 concepts
(represented by labels) are considered. Then, participants are required to identify these concepts in images within the IAPR-
TC12. However, the organizers do not have complete relevance assessments, in the sense that they do not know which of
the 20, 000 images in the IAPR-TC12 collection actually contain each concept. It is still not clear how participants will be
evaluated in this track. One way would be to obtain relevance assessments in the way it is done with other ImageCLEF tasks
(i. e. by looking at the submissions of the participants). Another option could be using the free-text annotations of images.
However, in any case the organizers do not certainly known in which of the 20, 000 images each concept is actually present.
The annotated IAPR-TC12 collection could be used to obtain complete relevance assessments for the concepts proposed in
this track, and for many other concepts (those considered in our vocabulary). The same applies for the object retrieval task
proposed in ImageCLEF2007 [54], with the difference that now images from the same collection could be used for training
and testing [54].

Spatial relations have been already used to improve region-level AIA or to provide better annotations based on these
relations [10, 21, 22, 67, 68]. The spatial relations we provide with the annotated IAPR-TC12 collection could be used for
similar experiments intending to use these high-level image features. These spatial relations could also be used to enrich
image annotations, adding them as meta-data to the original annotations for complex queries.

In the proposed vocabulary for annotation we have considered several concepts that have been widely studied in the field
of object detection and recognition (e. g. ’bottle’, ’car’, ’face’, ’hand’). With the annotated IAPR-TC12 collection we will
have information of the presence/absence and localization for each concept as well as information of spatial relations. In
consequence this collection could be used for the evaluation of methods for object detection and recognition. Techniques for
face and skin detection can be assessed as well.

6.2 Image Retrieval

The ultimate goal of both image-level and region-level AIA is to allow image collections to be searched by keywords.
It is assumed that the use of keywords would be better than query-by-example in a simple CBIR system [3, 4]. Some
researchers have recently assumed that the use of AIA methods in combination with CBIR and TBIR techniques give better
results than using CBIR or TBIR methods alone [60]. These assumptions, however, have not been proved neither theoretically
nor empirically.

The annotated IAPR-TC12 collection can be used for validating these assumptions. Particularly, we could give empirical
evidence on whether the performance of ABIR is superior to that of CBIR, and how well ABIR does with respect to TBIR
methods. We could also study the benefits of combining labels obtained from AIA methods, manual annotations, and visual
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information from images for the task of image retrieval. Furthermore, we could provide an empirical bound on the image
retrieval (ABIR) performance that can be expected by using the manual annotations for the entire IAPR-TC12 collection.

In Section 4.4 we described the features we extracted from regions. It is possible to extract other features and perform
a feature selection process for AIA and ABIR. Feature selection is the task of choosing a subset from the total of available
features so that the predictive performance of methods is not affected (see [64] for a comprehensive introduction). Very often
the selection of the adequate subset of features is more important than the classification-retrieval task itself. While this issue
has been already approached by Desselears et al. for CBIR [69], with the annotated collection we could perform an extensive
comparison of features for both tasks: AIA and ABIR. This is an important issue because almost in every work a particular set
of features is considered. In these works the improvements in performance of AIA methods could be due to the set of features
used instead of the method itself.

Spatial relations could also be used in the retrieval process, in order to give a form of comparing two images, other than
low-level image features. Works like [70, 65] explore this possibility by creating retrieval frameworks supporting spatial
information. The spatial information we provide, could also be used to allow complex queries on the image set, where the
interest could be on finding objects in specific positions with respect to others. Meta-data regarding spatial relations in the
image, like the one we suggest in Section 6.1, could be used for these more complex queries, based not only on the original
data, but also on these spatial relations.

6.2.1 An ImageCLEF track

The applications and questions mentioned above can motivate the proposal of a region-level AIA track at ImageCLEF. Also,
it is possible to propose an ABIR track and allow the use of AIA methods for the current ad-hoc photographic retrieval task.
Actually, this is the tendency shown by the ImageCLEF2008 organizers with the introduction of the visual concept detection
task (image-level annotation) for giving support to participants in the retrieval task. The proposal of a multi-modal (labels,
text, and images) image retrieval track is another feasible application for the annotated collection.

By means of these tracks we could study diverse interesting topics. For example, research advances in region-level AIA
and multi-class classification (see Section 6.4); what combination of methods (e. g. CBIR, ABIR and TBIR) performs better
for image retrieval; the benefits of combining information from multiple modalities for the task of image retrieval; the benefits
of considering spatial relations into the annotation and retrieval process, among many others.

6.3 Image Segmentation

Most segmentation benchmarks offer many different segmentations for the same image [43], so that the overlap between
the regions obtained with segmentation algorithms and those from ground truth data are compared. Because the IAPR-TC12
collection will be manually segmented, segmentation performance can be evaluated, to some extend, with this collection. The
proposed methodology states that most of the objects of considerable size, within our vocabulary, should be segmented (see
Section 4.3); also, several images have been over-segmented (see Section 4.4). In consequence, the segmented IAPR-TC12
collection can give us an estimate of segmentation performance for automatic methods with respect to the segmentation and
annotation rules we defined (see Section 4.3).

Just as the annotated IAPR-TC12 collection can be used for providing a bound in the retrieval performance of ABIR,
the same collection can be used to provide a bound in the annotation accuracy of region-level AIA methods if we could
have a perfect segmentation. That is, which annotation accuracy can be obtained with manual segmentations?. This is an
interesting question because we often make the assumption that low accuracy of region-level AIA methods is due to the poor
segmentation quality of images. Furthermore, we could study the issue of what would happen when you train with manually
segmented regions and test with images that have been segmented with automatic algorithms (e. g. normalized cuts or grid
patches [61, 10]).

6.4 Machine Learning Applications

The annotated collection could be used to bridge the gap between the machine learning and information retrieval commu-
nities. In the rest of this section we outline some important learning applications of the annotated collection.

Multi-class classification is the generalization of the binary classification problem to the case in which an observation
may belong to more than two classes [58, 59]. This problem is of great interest in the machine learning community, because
many interesting real-world problems involve multi-class classification. For example, text categorization, pixel-wise image
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classification, land covering classification, star-galaxy classification, genotype categorization, and digit recognition are all
multi-class classification problems. The machine learning community could use the annotated collection for studying the
classification problem for a large number of labels. One should note that the number of classes could be reduced if we
consider as classes the nodes at a particular level of the hierarchy of concepts. To the best of our knowledge, no research
on the effect on the performance of classifiers with an increasing number of classes has been performed. The concepts
hierarchy can be used to such end by increasing the number of labels according its levels. Also, little research on hierarchical
classification has been performed for AIA, the hierarchy could also be useful for studying this issue.

Currently, structured prediction is one of the hot-topics on machine learning [57, 56]. The problem consists of making
predictions of composed objects and sequence of objects that have strong dependency relationships among them [57, 56].
Structured domains include, machine translation (words in sentences are related to each other in any language), document
markup (Web pages are related by hyperlinks), hand written word recognition (digital letters are related to each other in
words), among many others. Region-level AIA can be considered a semi-structured domain because regions in the same
image are usually closely related (visually and semantically) to each other. Several methods for semi-structured prediction
have reported successful results in this task [10, 21, 22]. The application of structured prediction approaches could be
useful as well. Since we provide manual annotations for a large number of regions in images together with spatial relations
information, the collection could be used for exploring the application of structured prediction methods to the problem of
AIA. The collection can also be used for doing spatial data mining.

As we can see in Section 4.6 the number of training samples per class is highly imbalanced. This is a feature present in
most realistic data domains and, therefore, it is an important machine learning problem. The annotated IAPR-TC12 collection
can be used for benchmarking this important problem directly.

The machine learning applications identified in this section can be studied in a machine learning challenge or competition.
Machine learning competitions promote the collaboration among researchers and can advance significantly the state of the art
in some tasks. Up to this day, there have been many successful machine learning challenges, ranging from feature and vari-
able selection9, performance prediction10, model selection11, agnostic-learning vs prior-knowledge 12, causality discovery13,
reinforcement learning14, time series prediction15 and classification16.

7 Conclusions

The IAPR-TC12 image collection is an established image retrieval benchmark that has several attractive features. Namely,
it is a large size collection, it is composed of diverse and realistic images, it offers textual annotations in three languages and
it provides relevance assessments for evaluating image retrieval performance. A benchmark, however, is not supposed to be
static, but to evolve according to the needs of the task it is designed for and the emergence of new related-issues. In this
paper we introduced the segmented and annotated IAPR-TC12 collection, an extension to the benchmark that will increase
the number of tasks that can be benchmarked with the collection. This extension will also augment significantly the number
of applications for the IAPR-TC12 collection.

We described a methodology for the manual segmentation and annotation of the images in the IAPR-TC12 collection. The
methodology includes the definition of an ad-hoc annotation vocabulary and well defined criteria for objectively segmenting
and annotating images. A hierarchical organization of the vocabulary is proposed for the structured and objective annotation
of images. This pseudo-ontology is an added value to the collection because it can be used for the categorization of images
and for the identification of relevance assessments for image retrieval and related tasks. For machine learning, the hierarchy
can promote research on multi-class classification (varying the number of classes), hierarchical classification and structured
prediction as well. Visual attributes and spatial relations are extracted from regions in segmented images. The latter feature is
another contribution to the collection since it will allow the study of the benefits of using spatial information for the tasks of

9http://www.nipsfsc.ecs.soton.ac.uk/
10http://www.modelselsect.inf.ethz.ch/
11http://clopinet.com/isabelle/Projects/NIPS2006/
12http://www.agnostic.inf.ethz.ch/
13http://www.agnostic.inf.ethz.ch/
14http://rl-competition.org/
15http://www.neural-forecasting-competition.com/
16http://home.comcast.net/∼nn-classification/
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AIA and image retrieval. Statistics on the annotation-segmentation process17 give evidence that the methodology we follow
is reliable and well suited for the IAPR-TC12 collection.

A new evaluation measure for AIA, based on the hierarchy, is proposed. This measure is an alternative to the hard
evaluation measures that consider a predicted label as correct if and only if it is the same as the ground truth label. While
hard measures effectively assess the performance of AIA, they can be too rigid for the current state of the art in AIA. Further,
some predicted labels deserve partial credit because of its relationship (visual and/or semantic) with the ground truth labels
(e. g. trees and tree). Initial experimental results give evidence that the measure effectively assess AIA performance, and that
labels evaluated as correct, with the soft measure, can be very useful for image retrieval.

Another important contribution of this work is the identification of applications for, and important questions that can be
answered with, the annotated IAPR-TC12 collection, that will help to advance in different research areas. The following list
summarizes specific applications we have identified for the annotated collection:

1. Benchmarking:

(a) Region-level and image-level AIA,

(b) Visual-concept detection and object retrieval,

(c) Object detection-recognition, face and skin detection.

(d) ABIR,

(e) Segmentation.

2. Studying the combination of the following information for image retrieval:

(a) Manual annotations,

(b) Automatically generated labels,

(c) Visual features from images and/or regions,

(d) Spatial relations.

3. Studying the advantages of using spatial relations for:

(a) AIA,

(b) ABIR,

(c) CBIR.

4. Comparing and combining different approaches to image retrieval:

(a) CBIR,

(b) TBIR,

(c) ABIR.

5. Using the hierarchy of concepts for:

(a) Organization and categorization of the collection,

(b) Topic creation,

(c) Relevance assessments creation.

6. Solving machine learning problems, such as:

(a) Training learning algorithms,

(b) Multi-class classification with varying number of classes,

(c) Hierarchical classification,

17We have segmented and annotated, approximately, one quarter of the entire collection. We expect to have segmented and annotated
the full collection by the end of this year.
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(d) Structured prediction,

(e) Classification on imbalanced data sets,

(f) Spatial data mining,

(g) Feature selection.

It is clear that the annotated collection will be useful not only for benchmarking AIA and ABIR. It will also offer benefits
and promote research on other multimedia and machine learning sub-areas. The above research directions can motivate the
proposal of an ImageCLEF track or a machine learning challenge. The collection can also be used for reinforcing current
ImageCLEF tracks that make use of the un-annotated IAPR-TC12 collection.

Statistics on the segmentation-annotation process and initial annotation results show that the methodology we follow is
straightforward and give evidence that the resulting annotated collection will be a reliable benchmark for AIA and related
tasks. Moreover, the contributions mentioned in this section show that the annotated IAPR-TC12 benchmark will be a very
important resource for the multimedia and machine learning areas, motivating research in several directions. Once finished,
the collection will be made publicly available18 for academic and research purposes.
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